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Resumen

A principios de la segunda guerra mundial, surgié el mayor método de encriptacidon hasta
entonces. Este, se realizaba gracias a una maquina que habia sido disefada por los alemanes
para fines del mercado, y que el ejército aleman la mejord para encriptar sus mensajes
durante el periodo bélico, la maquina Enigma.

Durante este tiempo, un grupo de cientificos ingleses estuvo trabajando junto con Alaran
Turing para poder descencriptar estos mensajes. Utilizar fuerza bruta para este fin era una
practica impensable, debido a la complejidad que tenia la mdaquina Enigma (su total de
combinaciones iniciales posible era de 158 962 555 217 826 360 000). Por este motivo,
tuvieron que buscar otra alternativa y la encontraron, el método de contradicciones. A partir
de una hipétesis inicial (una combinacién de la enigma inicial), llegar a una contradiccion
para poder descartar todas las combinaciones que han ido apareciendo hasta ese momento.
Con esto, se llegaba finalmente a una correcta.

Este método de contradicciones fue llevado a un nivel superior cuando encontraron fallos en
las criptografias de los militares nazis (repeticiones de patrones en sus mensajes) y una
funcionalidad reducida que tenia la maquina Enigma: una letra no podia encriptarse por ella
misma.

Este proyecto trata de plasmar y simular todo el trabajo que realizaron mediante cédigo y
hardware actual, para dar una visidn de lo importante que puede llegar a ser evitar la fuerza
bruta cuando se puede. Se realizard un cddigo de fuerza bruta para compararlo con el
método de contradicciones.

Resum

A principis de la segona guerra mundial, va sorgir el metode més gran d'encriptacio fins
llavors. Aquest es realitza gracies a una maquina que havia estat dissenyada pels alemanys
com a Unic objectiu el mercat, i qué I'exércit alemany la va millorar per encriptar els seus
missatges durant el periode bél-lic, la maquina Enigma.

Durant aquest temps, un grup de cientifics anglesos va estar treballant juntament amb
Alaran Turing per poder descencriptar aquests missatges. Utilitzar forca bruta per a aquest fi
era una practica impensable, a causa de la complexitat que tenia la maquina Enigma (el seu
total de combinacions inicials possible era de 158.962.555.217.826.360.000). Per aix0, van
haver de buscar una altra alternativa i la van trobar, el métode de contradiccions. A partir
d'una hipotesi inicial (una combinacié de I'enigma inicial), arribar a una contradiccié per
poder descartar totes les combinacions que han aparegut fins aleshores. Amb aix0, arriba
finalment a una de correcta.



Aquest metode de contradiccions va ser portat a un nivell superior quan van trobar
mancances en les criptografies dels militars nazis (repeticions de patrons als seus missatges)
i una funcionalitat reduida que tenia la maquina Enigma: una lletra no podia encriptar-se per
ella mateixa.

Aquest projecte tracta de mostrar i simular tota la feina que van realitzar mitjangant codi i
maquinari actual, per donar una visié de com pot ser d'important evitar la for¢a bruta quan
es pot. Es fara un codi de forca bruta per comparar-lo amb el métode de contradiccions.

Abstract

At the beginning of the second world war, the greatest encryption method until then
emerged. This was done thanks to a machine that had been designed by the Germans for
market purposes, and that the German army improved to encrypt their messages during the
war period. This machine was called Enigma.

During this time, a group of English scientists was working together with Alaran Turing to
decrypt these messages. Using brute force for this purpose was an unthinkable practice, due
to the complexity of the Enigma machine (its total number of possible initial combinations
was 158,962,555,217,826,360,000). For this reason, they had to look for another alternative
and they found it, the method of contradictions. Starting from an initial hypothesis (a
combination of the initial enigma), arrive at a contradiction in order to rule out all the
combinations that have been appearing up to that moment. With this, a correct one was
finally reached.

This method of contradictions was taken to a higher level when they found flaws in the Nazi
military's cryptography (pattern repetitions in their messages) and a reduced functionality
that the Enigma machine had: a letter could not be encrypted by itself.

This project tries to capture and simulate all the work they did using current code and
hardware, to give a vision of how important it can be to avoid brute force when possible. A
brute force code will be performed to compare it with the contradictions method.
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1. Encriptacion historica

1.1 Necesidad de encriptar los mensajes

A lo largo de la historia, el hombre ha estado en continuas confrontaciones con el hombre, y
por lo tanto, ha sentido la necesidad de enviar mensajes a sus aliados sin que estos
mensajes, si eran interceptados por el enemigo, pudieran ser comprensibles.

Hagamos un repaso a cdmo ha ido evolucionando la criptografia a lo largo de la historia
hasta el punto histérico donde estd ambientado este proyecto.

1.2 Origenes de la criptografia, criptografia clasica

Se calcula que el cifrado de mensajes se lleva practicando desde hace mas de 4.000 afios[1]
y que, precisamente, el origen de dicha palabra proviene del griego krypto, que significa
“oculto” y graphos, escribir. Por lo tanto, podria ser traducido como escritura oculta.

En la Biblia, hay referencias al Atbash, utilizado para cifrar mensajes y remontado al afio 600
a.C. Este método de encriptado era un tipo de cifrado por sustitucion[2], es decir, un método
de cifrado por el que unidades de texto plano son sustituidas con texto cifrado siguiente un
sistema regular[3]; las “unidades” pueden ser de una sola letra (el caso mas comun), pares
de letras, trios de letras, mezclas de lo anterior... Por lo que el receptor realiza una
sustitucion inversa para descifrar el texto.

En el caso particular del Atbash, esta sustitucidon se hacia entre la primera letra y la ultima, la
segunda y la penultima y asi sucesivamente. Un ejemplo de cdmo quedaria el alfabeto
espainol en una tabla Atbash se muestra en la Figura 1.

Original |a |b|(c|d (e |f (ag|h|i |j k|l |m|n|fi|o|lp|g|r{s |t |u|v|w|x|y|Z

Clave Z|IY X|W[V|U[T|S|R|Q|P|O|H|N|M|L|K|J|I|H|G|F|E|D|C|B|A

Figura 1. Alfabeto espafiol en una tabla Atbash[2]
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Los espartanos también son estudiados por haber utilizado la criptografia para proteger sus
mensajes. Concretamente, utilizaban una técnica conocida como cifrado por transposicion.
Esta técnica se basaba en cambiar la posicidén de las unidades de texto plano siguiendo un
esquema bien definido[4]. Estas unidades de texto podian ser de una sola letra (el caso mas
comun), pares de letras, trios de letras, mezclas de lo anterior... Como era el tipo de cifrado
mas utilizado en la criptografia cldsica, y por lo tanto, al tener que hacer los célculos por
medios muy basicos, normalmente el algoritmo se basaba en un disefio geométrico o en el
uso de artilugios mecanicos. Este tipo de algoritmo es de clave simétrica, ya que tanto
emisor como receptor necesitan saber dicha clave para realizar su funcion.

En el caso de los espartanos, utilizaban la escitala, Figura 2, como artilugio mecanico. Era un
bastén de un didmetro determinado que se utilizaba para enroscar en torno a si, una tira de
cuero u otro material, en el que estaba escrito el mensaje. Al enrollarse alrededor del
bastdn, aparecia el mensaje correctamente escrito. Por lo tanto, y como hemos mencionado,
el didmetro exacto de dicha escitala debia de ser conocido por ambos bandos.

Figura 2. Escitala espartanal5]

Por ultimo, de la Antigua Roma procede el tipo de cifrado mas conocido, el cifrado César,
atribuido al mismo Julio César. Este tipo de cifrado pertenecia a los tipo de cifrado por
sustitucion[6] ya mencionados con la peculiaridad de que una letra en el texto original era
reemplazada por otra letra que se encontraba a un nimero fijo de posiciones mas adelante
en el alfabeto. Por ejemplo, con un desplazamiento de 3, y ademads, segln el historiador
romado Suetonio[1], el mas utilizado por Julio César, la A seria sustituida por la D, la B por la
E, etc.

1.3 Criptografia en la Edad Media

En esta época es donde la criptografia tuvo su gran revolucion, ya que en el siglo IX, Al-Kindi,
un cientifico arabe de muchas disciplinas[7], reconocido por ser de los primeros que hicieron
traducir al arabe la obra de Aristoteles y sobretodo, por sentar una de las bases
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fundamentales para romper mensajes cifrados gracias al estudio del Coran; el analisis de
frecuencia.

Se basaba en analizar patrones en los mensajes cifrados para localizar repeticiones y buscar
la correlacién con la probabilidad de que aparezcan determinadas letras en un texto escrito
en un idioma concreto.

Ibn al-Durayhim y Ahmad al-Qalgashandi, dos matematicos y criptologos arabes, también
profundizaron en los analisis de frecuencia y trabajaron en el desarrollo de cédigos mas
robustos al aplicar multiples sustituciones a cada letra de un mensaje (rompiendo asi los
patrones que podian hacer que un cédigo se rompiese).

1.4 Criptografia en el Renacimiento

Una de las figuras clave de esta época en esta disciplina fue Leon Battista Alberti[1],
secretario personal de los tres Papas en los Estados Pontificios.

Al igual que los nombrados recientemente, Ilbn y Ahmad, Alberti trabajaria en el cifrado
polialfabético y desarrollaria un sistema de codificacion mecanico (basado en discos)
conocido como cifrado de Alberti. Estd formado por dos discos, uno fijo y otro mévil. El disco
fijo tiene un didmetro que es superior en un noveno al del disco mévil[8], tal y como se
muestra en la Figura 3. El disco fijo estd dividido en 24 sectores, repartidos en 20 para todas
las letras del alfabeto ordenadas (excepto la J, U, W e Y, ya que en latin no existian), y los 4
sobrantes con numeros del 1 al 4 para que luego, estos sectores coincidan con los sectores
del disco movil. El disco movil tendra también 24 sectores, que coincide con el nimero total
de cardcteres con el que consta el alfabeto latino, siendo el vigesimocuarto “et”[8]. En este
caso, los caracteres no estan ordenados.
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Figura 3. Discos del cifrado de Alberti[9]

Tanto emisor como receptor, tienen que compartir un “libro de cédigos”[9], el cual, indicard
que letra del disco mévil sera utilizada como indice respecto al disco fijo para cada giro del
disco movil. Vamos a ver a continuacién los dos métodos de encriptacion que existian.

Partiendo de querer encriptar el siguiente mensaje: LAGVERRASIFARA, que significa la guerra
se hard... tenemos que existe la “R” doble, la cual, traera problemas por como se
distribuyen los discos. Aqui tenemos dos opciones, eliminarla o introducir un caracter nulo.

Para el método de introduccién del caracter nulo, el texto que queremos encriptar quedara
tal que asi: LAGVER2RASIFARA, habiendo introducido un namero entre las dos “R” como
caracter nulo.

En este caso, tenemos que indicar los cambios de giro para el disco movil de alguna forma
diferente a un numero, puesto que como hemos dicho, este simboliza un cardcter nulo. Se
oo

utiliza por ejemplo el cardcter “_”, por lo que el texto a encriptar queda:
_LAGVER2RA_SIFARA.

Ahora, mediante el libro de cddigos, ambas partes deben de ser conocedoras de los indices.
Por ejemplo, antes del primer giro, situaremos la g con la A, después del primer giro la g con
la Q, y asi sucesivamente. Por lo que en este método, el indice es una letra del disco movil
(la g). A parte, deben de ser conocedoras del orden en que aparecen los caracteres en el
disco movil. En la Figura 4 vemos el estado inicial para este ejemplo.

ABCDEFGILMMOPQRSTVXZ1234 Anillo fijo

gklnprtuz@xysomgihftdbace Anillo mdwvil

Figura 4. Estado inicial de los discos[9]

oaon

El primer caracter se encriptarad como la letra perteneciente a nuestro indice (“A”), ya

gue como dijimos, sefiala el cambio de giro del disco mévil. Después, a partir de la
disposicion de la Figura 4, podemos seguir encriptando hasta encontrar otro “_”, tal y como
se muestra en la Figura 5 y donde, se encriptara con la siguiente letra para nuestro indice

(“Q), tal y como esta en el libro de cédigos.
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_LAGVER2ZRA_ Plaintext

AzgthpmamgQ Ciphertext

Figura 5. Encriptado de giro a giro mediante introduccidn de caracter nulo[10]

o“_n

Una vez en este punto, se hard el giro en el disco mévil, haciendo coincidir la “Q” con la “g”,
tal como vemos en la Figura 6, y podremos seguir encriptando con el resultado final de la
Figura 7.

ORSTVXZ1234ABCDEFGILMNOP Anillo +ijo

gklnprtuzéxysomgihfdbace Anillo mdvil

Figura 6. Nuevo estado de los discos después de un giro[9]

_SIFARA Plaintext

Qlfiyky Ciphertext

Figura 7. Encriptacion final mediante introduccion de caracter nulo[10]

Cabe destacar que tanto la “A” como la “Q” que salen en la encriptacién seran ignoradas, ya
gue se sabe que es solo el indicador de un giro.

Para el segundo método, el de eliminacion de la letra “R” repetida, indicaremos con un
numero cuando hay un giro del disco movil, por ejemplo con el 3: LAGVERA3SIFARA.

En este método, el indice ya no es una letra del disco movil, sino una letra del disco fijo. Por

ejemplo, vamos a ubicar una posicidn inicial en que a la letra “A”, le pertenece la letra “m”,
tal y como vemos en la Figura 8.

ABCDEFGILMHOPQRSTWXZ1234 Anillo fijo

mgihfdbacegklnprtuz&xyso Anillo mévil

Figura 8. Estado inicial de los discos[9]
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A partir de aqui, podemos empezar a encriptar hasta llegar al nimero, Figura 9. Una vez
llegados a este punto, situaremos la letra que corresponde al numero (3 y por lo tanto, “s”) a
nuestro indice, que es la “A”, Figura 10.

_LAGVERA3 Plaintext

mcmbufpms Ciphertext

Figura 9. Encriptado de giro a giro mediante eliminacion[10]

ABCDEFGILMHOPQRSTVXZ1234 Anillo fijo

somgihfdbacegklnprtuzéxy Anillo movil

Figura 10. Nuevo estado de los discos[9]

Y ya solo quedara encriptar lo que falta de texto, Figura 11.

_SIFARA Plaintext

sndhsls Ciphertext

Figura 11. Encriptacion final mediante eliminacion[10]

Por lo tanto, el método de cifrado de Alberti presenta una clara ventaja: no es posible
atacarlo con el analisis de frecuencias comentado anteriormente. Ademas, tiene un extra en
la seguridad ya que para poder desencriptar un mensaje el receptor necesita de un disco
exactamente igual al que sirvié para crear el cifrado. Esto también es un problema, ya que si
alguien no intencional posee de un disco igual, descifrara el mensaje con facilidad.

Por ultimo, mencionar que el cifrado de Alberti es el primero que utiliza un cifrado
polialfabético. Esto quiere decir que a lo largo del mensaje se cambia de alfabeto, como ya
hemos visto con los giros del disco mévil. Esta idea, serd la explotada por los siguientes tipos
de cifrado e incluso, por el cifrado que se analiza en este proyecto.

En esta época también tenemos el Manuscrito de Voynich, conocido como “el gran reto de
los descifradores de cédigos”. Aln no se ha podido descifrar[1].
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En el siglo XVI, Francia veria nacer a otra de las figuras claves de la criptografia, Blaise de
Vigenere,, que en 1586 publicaria el libro Traité des chiffres ol secretes maniéres
d’escrire[8], en el que expone su nuevo método de cifrado, que esta basado en la cifra de
César y utiliza ideas de Alberti.

La idea principal de este método es cifrar mediante el cifrado de César pero con un
desplazamiento arbitrario[8], y no fijo como lo hacia el propio César. Es decir, cifrar la
primera letra a desplazamiento 3, la segunda a desplazamiento 7... Este método resiste al
analisis de frecuencias, pues cada letra se codifica de muchas formas distintas. Pero claro, si
cambiamos arbitrariamente la cifra César, ni nosotros mismos vamos a ser capaces de
descifrarla. Para ello, Vigenére utiliza el concepto de palabra clave.

Una palabra clave, por ejemplo, podria ser VIGENERE. Lo que queremos conseguir con esto
es tener este desplazamiento arbitrario mediante una clave. Si nos fijamos, podemos cifrar
la primera letra de un texto con un alfabeto César que empiece por “V”, la segunda por “I”,
la tercera por “G”, y asi hasta llegar a la octava en nuestro caso y volver a empezar por la “V”.
Por lo tanto, cuanto mas larga sea la clave, mas alfabetos utilizamos y por lo tanto, podemos

variar mucho el resultado del criptograma.

Vamos a ver un ejemplo sencillo de cdmo seria poner esta explicacién en practica. Para ello,
nos ayudaremos de una tabula recta, Figura 12. Es una tabla que se le da origen a Tritemius
en su obra Polygraphia. Con esta, podemos ver cualquier tipo de alfabeto a cualquier
desplazamiento. Podemos leerla tanto horizontal como verticalmente, el resultado no varia.
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Figura 12. Ejemplo de Tabula Recta[11]

Imaginemos que queremos cifrar el mensaje: lacifradevigenere con la clave que
mencionamos anteriormente, VIGENERE y que vamos a leer la tabla horizontalmente.

I(IH

Primero, buscamos en la primera fila la letra que queremos cifrar (“I”). Como es la primera
letra, tal como dijimos, empezaremos a cifrar con un alfabeto que empiece por “V”, por lo
que iremos a la fila de la “V” en la primera columna y veremos que letra se entrecruza con la

HIII

letra “I” de la primera fila. En este caso, la letra “G”.

El siguiente paso seria buscar en la primera fila la siguiente letra: la “a” y buscar donde se

cruza con la fila correspondiente al alfabeto que empiece por “I”. Por lo tanto, la letra

llIIl

resultante seria: “I”. Y asi sucesivamente.

Sin embargo, en el siglo XIX, dos personajes lograron “romper” la cifra de Vigenere. Uno de
ellos fue Charles Babbage vy el otro el militar prusiano, Kasiki. Estos, se dieron cuenta de que
realmente si que se podia aplicar el analisis de frecuencias para desencriptar el mensaje.
Bastaba con darse cuenta de que si se buscaban repeticiones de patrones vy el cifrado era lo
suficientemente largo, se podia intuir la longitud de la clave. Si por ejemplo, la clave, como
en el caso anterior que hemos detallado, tiene 8 caracteres, resultara que las letras que
ocupan las posiciones 1,9,17... se habran cifrado con el mismo alfabeto (recordemos que
mencionamos que cuando se llegaba a la Ultima letra de la clave, volviamos a la primera).

2. Maquina Enigma

Tal y como hemos visto y comentado, durante la historia de la humanidad, el ser humano ha
necesitado encriptar los mensajes para que fuesen inteligibles para el enemigo. En el afio
1918, un ingeniero alemdan llamado Arthur Shcerbius[12], junto con su empresa “The
German firm Scherbius & Ritter” patenté las ideas de una mdquina de cifrado. Fue
finalmente, en el afio 1923 cuando se empezd a comerciar con el disefio final y se le dio el
nombre de Enigma. Su uso principal estaba destinado al mercado y poco a poco fue
cogiendo fuerza en el ambito diplomatico, hasta que finalmente, dio su gran paso y pasé a
ser un elemento imprescindible en las comunicaciones militares, donde la modificaron para
gue esta alcanzase una gran complejidad.

2.1 Componentes
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2.1.1 Teclado

Usado para escribir el texto el cual queria ser encriptado o desencriptado. Contenia 26 letras
del alfabeto con una disposicion QWERT[13]. Cuando cualquier letra es pulsada, se envia
una sefial eléctrica al siguiente componente.

2.1.2 Rueda de entrada/salida

La rueda de entrada/salida es el componente intermediario entre lo exterior a la maquinay
lo interior. Se encarga de llevar la corriente de una letra que viene del teclado a los rotores y
de llevar la respuesta de los rotores al panel de bombillas.

Estd constituida por un cable grueso que contiene 26 cables en el interior, cada uno
representando una letra. En la cara de la rueda, tenemos 26 pines planos metalicos, que son
la terminacion de cada cable, Figura 13.

Figura 13. Modelado 3D de una rueda de entrada/salida[14]

2.1.3 Rotores

Los rotores son el corazén de la mdaquina Enigma. Son los encargados de transformar una
letra de entrada en una de distinta como salida.

Para la primera maquina Enigma (1930), se fabricaron 3 rotores[14], con nombres: |, Il y llI
(los mantuvieron a lo largo de la trayectoria de la maquina). En 1938, se fabricaron dos
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unidades adicionales: IV y V. Y por ultimo, en el aino 1939, se fabricaron exclusivamente los
rotores VI, VIl y VIII para el ejército naval. Para saber con qué rotor se estaba trabajando, el
numero de este estaba en la cara de entrada, Figura 14.

Figura 14. Cara de entrada del rotor 111{15]

En la Figura 15, se muestra un rotor visto por las dos caras, desmontado y con niUmeros para
indicar las distintas partes de este. La cara de la izquierda hace referencia a la salida, y la de
la izquierda a la de entrada (siempre tenemos la rueda 9 a la derecha de la tira alfabética 3).
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Figura 15. Composicidon completa de un rotor[14]

1- Anillo rojo que indica qué letra es la muesca, en el caso del rotor de la Figura 15, la letra
“”.

2- Marca en forma de circulo rojo que nos indica, para cada rotor, cual es la letra “A” de este.
3- Anillo con el alfabeto de la “A” a la “Z”.

4- Pin plano metalico de salida del rotor.

5- Cableado que conecta el pin metdlico de entrada de un rotor con el pin plano metalico de
entrada de este.

6- Pin metalico de entrada de un rotor.

7- Muesca que sirve para cambiar la relacién que hay entre la entrada que le llega a un rotor
y la entrada real de este. Se introdujo mas adelante, no lo cubrimos en este proyecto. Por
este motivo es importante el elemento 2, para ser conocedor de cual es la letra “A” del rotor.
8- Tubo que sujeta los rotores.

9- Rueda utilizada para dar posicidn inicial a los rotores por parte de los operarios.

10- Rueda en forma de sierra que gracias a una palanca (no perteneciente a los rotores),
hace que estos giren.

El conexionado que se hace mediante cable que acabamos de mencionar (elemento 5), es
fijo para cada rotor, era conocido por todos en la armada alemana y acabé siendo conocido
también por los ingleses. Como lo obtuvieron se desconoce. En la Figura 16 se ve la salida
gue producia cada rotor con la entrada de este.

Rotor # | ABCDEFGHIJKLMNOPQRSTUVIWKYZ
| | EKMFLGDOVZNTOWYHXUSPATERC]
Il AJDKSTRUXBLHWTMCQGZNPY FVOE
1 | BODFHILCPRTXVINYEIWGAKMUSOO

IV ESOVPZIAYQUIRHXLMF TGKDCMWE

v VZBRGITYUPSDNHLXAKMIQOFECK
Vi JPGVOUMFYQBENHZRDKASXLICTH
Vi | MNZIHGRCKMY SWBOUFATVLPEKQDT
VI | FEQHTLXCCBISPDZRAMEWNIUYGY

Figura 16. Interconexionado de cada rotor[14]

Por ejemplo, para el rotor Il, si tenemos una “A” de entrada, este seguird sacando una “A” de

IIJ n

salida. Si entra una “B”, sacara una “J”. Si entra una “C”, una “D”, y asi sucesivamente.
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Hemos mencionado el término “muesca” en el elemento 1 de este mismo apartado. La
muesca indica que llegado el rotor a esa posicidn, el siguiente rotor debe de hacer un giro.
Estas muescas, también eran fijas para cada rotor y también conocidas, Figura 17.

Rotor Motch

I @/
Il =
1 ."u"
IV J
v £

VI WVIE VI | 2+

Figura 17. Muescas de cada rotor[14]

Como vemos, los rotores VI, VIl y VIl se les introdujo una segunda muesca, aumentando la
complejidad considerablemente, ya que los rotores giraban con frecuencia x2, y por lo tanto,
era mas complicado imaginarse el recorrido de estos.

2.1.4 Reflector

El reflector es el componente encargado de crear un camino de vuelta a la sefial eléctrica
gue le viene del rotor que estd conectado a él. Con esto, conseguimos que una letra de
entrada nunca de la misma como salida, ya que el recorrido que va a llevar la corriente de
vuelta va a ser distinto que el de ida.

Es una rueda constituida por 26 pines metadlicos, tal y como se ve en la Figura 18, que toman

contacto con los del rotor mas cercano. Cada pin del reflector, para crear un camino de
vuelta distinto, estd interconectado mediante cables con otro pin, Figura 19.
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Figura 18. Modelado 3D del reflector[16] Figura 19. Modelado 3D del interconexionado

del reflector[16]

Existian dos reflectores distintos, llamados reflector B y reflector C, cada uno con conexiones

distintas. Al igual que los rotores, estas conexiones eran conocidas y siempre las mismas[17],

Figura 20.
reflector B (AY) (BR) (CU) (DH) (EQ) (FS) (GL) (IP) (IX) (KN) (MO) (TZ) (VW)
reflector C (AF) (BV) (CP) (D1) (EI) (GO) (HY) (KR) (LZ) (MX) (NW) (TQ) (SU)

Figura 20. Interconexionado de los dos reflectores[17]

2.1.5 Panel de bombillas

Consistia en un total de 26 bombillas, con la misma distribucién del layout del teclado
(QWER) y que cada una de ellas tenia impresa una letra. La bombilla iluminada era la letra
encriptada/desencriptada que se habia pulsado en el teclado.

2.1.6 Plugboard

Fue el elemento innovador creado por la milicia nazi para aumentarle el grado de

complejidad que tenia la maquina enormemente[12], luego veremos esto.
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Consistia en un panel con dos agujeros verticales por caracter del abecedario, por lo tanto,
52 agujeros totales, tal y como se muestra en la Figura 21. Uno de los agujeros servia como
entrada a la maquina, y el otro como salida. Cuando la corriente circulaba por el agujero de
entrada, significaba que esa letra era la que se habia presionado en el teclado.

Figura 21. Vista frontal (plugboard) de una maquina Enigma[12]

Para ello, se utilizaban unos cables simétricos (ambas terminaciones eran iguales), cada una
de ellas con dos pines que servian para conectar dos letras, los dos agujeros de la entrada y
los dos agujeros de la salida.

Un ejemplo lo tenemos también en la Figura 13, donde un cable conecta laletraAconlaly
viceversa. El pin de entrada de la terminacion “A”, sera conectado con el pin de entrada de Ia
terminacion “J”, haciendo que si se pulsa la tecla “A”, el corriente entrara a la maquina como

si se hubiera presionado la tecla “J” y viceversa. Por otro lado, el pin de salida de la
terminacion “A”, serd conectado con el pin de salida de la terminacion “J”, y el

comportamiento sera el mismo que el descrito con la entrada.

2.2 Funcionamiento

Para explicar un ejemplo de iteracién de la Enigma, vamos a proponer una configuracién
inicial y vamos a ir intercalando la explicacién electromecanica con la ayuda de un
simulador[13] de la mdaquina que podemos encontrar por Internet. En aquella época, los
operarios tenian una hoja con todas las configuraciones de la Enigma para todo el mes,
Figura 22.
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Figura 22. Ejemplo de las configuraciones iniciales de todo un mes[18]

Para nuestro caso, el rotor lento serd el IV, el del medio el Il y el rapido el I. La posicidn inicial
del rotor lento serd la “B”, la del medio la “T” y la del rapido la “H”. El reflector sera el B. En
la Figura 23 podemos observar esta configuracion. No conectamos ninguna pareja del
plugboard. La lineas rojas hacen referencia a la letra que es la muesca en cada rotor.

900000000

=

000000000
00000000

DEEEEEEEEEEEE

EEEE

o]

Figura 23. Estado inicial de la Enigma mediante un simulador
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Como hemos comentado, la Enigma era un dispositivo electromecdnico. Se empezaba
pulsando en el teclado la letra que quisiéramos encriptar/desencriptar (la “R” en nuestro
ejemplo) y acto seguido, habia un giro en los rotores (solo se mueve el rotor rapido, ya que
ninguno esta en su muesca), Figura 24.

09000000
00000000

200000000

[ oo
000000000
| 000920000

9200000000

Figura 24. Estado de la primera iteraciéon de la Enigma mediante un simulador

La sefial eléctrica que se generaba (linea azul) desde el teclado viajaba al plugboard. Si no
habia cable en el plugboard la sefial seguia el cable de la letra correspondiente con el
teclado (como se ve en el ejemplo, la “R” serd “R”). Si por el contrario, si habia cable creando
una pareja, la sefial iba al nuevo clave.

Esta sefal llegaba a la rueda de entrada/salida (referenciada como “ETW” en el ejemplo) que
hacia contacto con el primer rotor que tenia pegado a ella (el I). De los 26 pines metalicos
gue tenia esta rueda, solo tenia sefal el que venia del cable del plugboard. Por lo tanto, este
pin (en nuestro ejemplo es nuestra “R”) hacia contacto con el pin del rotor rapido (la “Z”). Si
nos fijamos en la Figura 24, vemos que era la letra “Y”, pero hubo un giro en este rotor nada
mas presionar el teclado.

Mediante el interconexionado del rotor, la sefial viajara hasta el otro extremo donde habrd
un pin metdlico que estara tocando con otro pin del siguiente rotor (mismo procedimiento

gue acabamos de ver).

Al llegar al ultimo rotor, este tendra contacto con un pin del reflector, en nuestro ejemplo, la
letra “L” de este. Como vimos, el reflector lo que hacia era generar un camino de vuelta
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(linea amarilla en nuestro ejemplo) Unico, por lo que cada letra que le entraba, tenia su
Unica conexion con una de salida. En nuestro caso, al ser la “L”, esta letra de salida es la “G”.

La sefial viajara por los rotores hasta llegar a la rueda de entrada/salida. Esta llevara la sefal
al plugboard y depende de si la letra esta conectada o no, se iluminara una bombilla u otra.
En nuestro caso, le llega al plugboard una “W” y como no tiene pareja, esta es la letra que se
iluminard en las bombillas (podemos verlo tanto en la zona llamada “LAMPBOARD” como en
“OUTPUTS”.

2.2.1 Giro de los rotores

Cada rotor tiene asociada una palanca que a cada pulsacién del teclado esta sube. Para que
un rotor gire, esta palanca tiene que poder empujar uno de los dientes de sierra de dicho
rotor. Si nos fijamos en la Figura 15 del apartado “2.1.3 Rotores”, esta sierra es el elemento
10. La palanca del rotor rapido siempre estarad colocada de tal forma que siempre que suba
pueda empujar un diente del rotor, y por lo tanto, hacerlo mover.

Las palancas de los siguientes rotores nunca pueden empezar un diente de sierra de su rotor
correspondiente, debido a que se lo impide el elemento 1 del anterior rotor (su muesca). El
disco de esta muesca estd mas elevado que los dientes de sierra. Una vez un rotor llega a su
muesca, esta hara que la palanca del siguiente rotor baje de nivel y pueda empujar un diente
de sierra de su rotor.

Para una explicacién mucho mas detallada y visual, recomiendo ver el video[16], de donde
ya hemos ido sacando imagenes de algin componente de la Enigma. En concreto, la
representacion de los giros de los rotores.

2.2.1.1 Doble giro de rotores

Un dato a tener en cuenta, y que si no se entiende el funcionamiento del apartado anterior
“2.2.1 Giro de los rotores” no es logico, es de que hay ocasiones en que el rotor lento
provoca un giro en el mismo y en el rotor anterior (el del medio). De hecho, eso pasa de la
misma forma con el rotor del medio, haciendo que gire el rdpido también, pero como el
rapido gira en cada pulsacidn de teclado, este efecto queda oculto.

Cuando el rotor del medio llega a su muesca, tal como explicamos en el apartado anterior,
dicha muesca permite a la palanca del rotor lento poder empujar un diente de su sierra para
hacerlo girar. Sin embargo, la palanca también queda nivelada con la muesca del rotor del
medio, empujandola y como esta, esta sujeta al rotor del medio, este también se mueve.
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Un ejemplo visual de este doble giro del rotor del medio puede verse en el video[19], el cual
es una representacién de la parte mecanica de los rotores de la Enigma hecha de madera.

2.3 Codigo secuencial

Con el cddigo secuencial hemos tratado de simular lo mas fielmente el funcionamiento de la
maquina Enigma visto previamente.

Como hemos visto anteriormente, el conexionado interno de cada rotor era conocido. Para
lograr esto, hemos creado una matriz con 8 vectores de 26 elementos cada uno, Figura 24.
Los 8 vectores simulan los 8 rotores que se llegaron a crear, aunque en este proyecto sélo
trabajamos con 5, y los 26 caracteres simulan todas las letras del abecedario. Esta matriz
solo nos sirve como el camino de ida.

char rotor[B8][26]={
I* Input "ABCDEFGHIJKLMNOPQRSTUVHXYZ" */

[* 1: */ EKMFL ZNTOWY I ,
fE IL: *f JDKSIRUXBLHWTMCQGZNPYFVOE™,
[* III: */ "BDFHILCPRTXVZNYEIWGAKMUSQOD",
[* IV: *[ "ESOVPZIAYQUIRHXLNFTGKDCMWB",

Figura 24. Cédigo del interconexionado de ida de los rotores

Lo que se quiere conseguir es que para cada posicién de cada vector, simulando una letra de
entrada, genere una letra de salida. Por ejemplo, si utilizamos el rotor Il y la letra de entrada
es la “C”, se estd accediendo al elemento rotor[1][2], y por lo tanto, la salida es “D”".
Recordemos que “A” es la posicion 0y “Z” la 25, como en cddigo ASCII.

Para el camino de vuelta, hacemos una matriz de las mismas dimensiones pero cada
elemento serd el inverso que vimos para el camino de ida, Figura 25. Por ejemplo, si
utilizamos el rotor Il y la letra de entrada es la “D”, se estd accediendo al elemento
rotorV[1][3], |la salida es “C” y por lo tanto, lo inverso del ejemplo anterior.
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char rotorV[8][26]={
/* Input "ABCDEFGHIJKLMNOPQRSTUVWXYZ" */

I* Xnaf UWYGAL ZBEC (SLRINQOD",
/* II: */ "AJPCZWRLFBDKOTYUQGENHXMIVS",
f* III: */ "TAGBPCSDQEUFVNZHYIXJIWLRKOM"
/* IV: *{ "HZWVARTNLGUPXQCEJMBSKDYOIF",
f* Uz *f QCYLXWENFTZOSMVIUDKGIARPHB"};

Figura 25. Cddigo del interconexionado de vuelta de los rotores

Es importante también tener guardado el reflector, ya que como vimos, también era
conocido, Figura 26. Es una matriz de dos vectores, ya que solo existian dos reflectores, con
26 elementos por vector; simulando las 26 letras del abecedario. El comportamiento es
idéntico a lo visto con los rotores, le llega una entrada mapeada a una posicion del vector
correspondiente y el elemento de esa entrada es la letra de salida del reflector.

char Reflector[2][26]={
/* Input "ABCDEFGHIJKLMNOPQRSTUVWXYZ" */
1T B YRUHQSLDPXNGOKMIEBFZCWVIAT", [/ (AY) (BR) (cu) (DH) (EQ) (F5) (GL) (IP) (3X) (KN) (MO) (TZ) (VW)
T* =l FVPJIADYEDRZ “TKUQSBNMHL"Y}:  /f (AF) (BV) (CP) (DJ) (EI) (GO) (HY) (KR) (LZ) (MX) (NW) (TQ) (SuU)

Figura 26. Cédigo del interconexionado de los dos reflectores

Por ultimo, en cuanto a datos conocidos, tenemos las muescas de cada rotor guardadas en
un vector, Figura 27. El mapeado en cuanto a rotor y posicidn es el mismo que acabamos de
ver, siendo la posicion 0 para el rotor | y la posicion 4 para el rotor V.

char Muescas[5]="QEVIZ";
Figura 27. Cédigo de las muescas de cada rotor
En este punto, necesitamos meternos en el papel del operario que configuraba la maquina
para que trabaje con esa configuracién todo el dia. Para ello, hemos creado una estructura

de datos donde guarda toda la informacidén necesaria para poner en marcha la maquina,
Figura 28.
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typedef struct {
int rF; // rotor Rapido
int rM; // rotor Central
iht S // rotor Lento

int refl; // reflector

char pF; [/ posicion inicial rotor Rapido
char pM; [/ posicion inicial rotor Central
char p5; // posicion inicial rotes Lento
char Plg[3@];:; // Plugboard

} EnigmaSet;

Figura 28. Datos de la configuracion inicial de la Enigma

Una vez tenemos la configuracion inicial, esta es pasada a una serie de vectores con los que
el cédigo trabajard a lo largo de la ejecucidn de este. Estos vectores son:
- Para simular los rotores colocados en ese momento, tenemos unos vectores de 26
caracteres: rFast (rotor de ida rapido), rVFast (rotor de vuelta rapido), rMiddle (rotor
de ida del medio), rVMiddle (rotor de vuelta del medio), rSlow (rotor de ida lento) y
rVSlow (rotor de vuelta lento). Estos son obtenidos mediante las matrices rotor y
rotorV.
- Para simular el reflector se utiliza un vector de 26 caracteres llamado Volta. Se
obtiene con el vector correspondiente de la matriz Reflector.
- Por ultimo, el plugboard es simulado con un vector de 26 caracteres que se obtiene
de la estructura de datos de la configuracidn inicial; de campo Plg.

Ahora ya solo queda que la Enigma itere para cada entrada que le llega. Lo mds importante
del cuerpo de esta es, y para hacerlo lo mas fiel posible, hacer por lo menos el giro del rotor
rdpido antes de empezar a calcular la salida (ya que este siempre lo hace). Por lo tanto,
tenemos que tener las muescas de los rotores siempre presentes antes de iterar, tal y como
se muestra en la Figura 29.

if (pMiddle == mMiddle) {
pFast = (pFast + 1) % 26;
pMiddle = (pMiddle + 1) % 2
pSlow = (pSlow + 1) % 26;

} else if (pFast == mFast) {
pFast = (pFast + 1) % 26;
pMiddle = (pMiddle + 1) % 26;

1} else
pFast = (pFast + 1) % 26;

-
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Figura 29. Comprobacién de giro de cada rotor

Como vemos, se le da prioridad a mirar la condicién de la muesca del rotor del medio. Esto
es, porque si la posicion actual del rotor del medio es la misma que su muesca, esto hace
gue gire este rotor y ademas, el rotor lento. Si por el contrario, esto no sucede, y la posicién
actual del rotor rapido es igual a su muesca, hard girar solamente al rotor del medio.
Recordemos que pase lo que pase, el rotor rapido siempre gira. Esto lo vimos explicado
mecanicamente en el apartado “2.2.1.1 Doble giro en el rotor del medio”.

A partir de aqui, le entra una letra y se simula el comportamiento de la enigma mediante los
vectores ya vistos (por orden de acceso): Plug, rFast, rMiddle, rSlow, Volta, rVSlow, rVMiddle,
rVFast y por ultimo, Plug otra vez, ddndonos la salida correspondiente.

2.3.1 Resultados de ejecucion

2.3.1.1 Fichero a encriptar/desencriptar

Para las ejecuciones de este proyecto vamos a usar ficheros de texto que corresponden con
libros completos de distintos autores. Es necesario que estos textos contengan un formato
en particular para que lo que se va a ver mas adelante en este proyecto funcione y cobre
sentido; empezaran todos con la palabra “TITLE” seguido de su titulo. Después vendra la
palabra “AUTHOR” seguido del nombre y apellido del autor (por este orden).

En particular, vamos a trabajar con un fichero de texto de 235,974 bytes. Este es el libro “Las
Indias Negras” de Julio Verne.

2.3.1.3 Resultados de ejecucion

En la Tabla 1 podemos ver el resultado de los tiempos de todo el programa y del trozo de
cédigo que hace referencia al calculo de la encriptacion/desencriptacion del texto. Se han
recogido los resultados de 100 ejecuciones del cddigo en el orden de milisegundos.

Total Calculo

Enigma secuencial Media 927.87 ms 927.35ms

Tabla 1. Tiempos total y de calculo de la Enigma secuencial
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Como podemos ver, el tiempo del programa que hace referencia al calculo de la
encriptacién/desencriptacién es del 99.94% del programa, por lo que nos interesa trabajar
sobre esta parte y ver si es paralelizable.

2.4 Codigo optimizado

La idea principal de este cédigo es la de prepararlo para la ejecucién en cuda. Podriamos
transformar el cédigo secuencial visto en el apartado “2.3 Cédigo secuencial” directamente
a cuda, pero haciendo una serie de optimizaciones, vamos a mejorar el resultado de este.
Estas optimizaciones van a ser las que vamos a ver en este apartado: precalculo de la matriz
Encriptador, precalculo de las matrices Camino y Ruta y el acceso a dichas matrices.

2.4.1 Matriz Encriptador

Como sabemos que los tres rotores van a ser los mismos, y en el mismo orden durante toda
la ejecucién de la enigma, nos vamos a aprovechar de esto haciendo un precdlculo. Este
precalculo se basa en tener almacenados, para cualquier entrada y cualquier posicion actual
de la letra de cada rotor, la salida de la enigma.

Para conseguir esto, vamos a tener una matriz de 26x26x26x26, que la vamos a llamar
Encriptador. Estas dimensiones son debidas a que tenemos 26 posiciones posibles para el
rotor lento, 26 posiciones posibles para el del medio, 26 posiciones posibles para el rapido, y
finalmente, 26 letras posibles de entrada para cada posicion. Por lo tanto, sean cuales sean
las dimensiones del texto que queremos encriptar/desencriptar, la maquina enigma va a
tener que iterar 456,976 veces.

Esto Ultimo es muy importante, ya que es muy probable de que ejecutemos mas veces la
maquina enigma de lo necesario solo para tener guardadas todas las combinaciones. Sin
embargo, y tal como he mencionado, el cddigo sirve para explotar la paralelizacién con cuda.
Veremos los resultados mds adelante.

Como vamos a tener que acceder a la matriz Encriptador de forma no secuencial, vamos a
tener también que haber precalculado el recorrido que va a llevar la enigma a partir del
orden de los rotores y su posicion inicial. Para ello, tenemos que identificar primero los 3
casos iniciales que existen en la Enigma (los llamamos A, B y C, Figura 30). Esto solo se
ejecuta una vez, al principio junto a la configuracidn inicial.
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if (pFast == ((mFast+1)%2c) && pMiddle == ((mMiddle+1)%26))

Caso = 'B';
else if (pFast == ((mFast+1)%2c6) && pMiddle == mMiddle)
Casa = 'A';
else if (mFast == pFast && mMiddle == pMiddle)
Casa = 'C';
else if (mMiddle == pMiddle)
Casa = 'B';
else
Caso = 'A';

Figura 30. Casos iniciales de la Enigma

Estos tres casos sirven para identificar como se comporta la enigma en los primeros giros de
los rotores, por eso se tienen en cuenta las muescas del rotor rapido y del rotor del medio. A
continuacién, vamos a analizar los tres casos para asi saber, el nUmero de posiciones que se
recorre en cada uno de ellos y asi saber de cuanto debe de ser nuestra estructura de datos
gue guarde este recorrido.

2.4.1.1Caso A

Para el caso A, vamos a seleccionar los siguientes rotores: | (rdpido), Il (medio), lll (lento).
Ademas, el rotor | va a tener la letra “Q” como posicidn inicial (su muesca), el rotor Il la letra
“F” como posicion inicial (siguiente a su muesca) y el rotor Ill la letra “A” como posicidén
inicial.

La siguiente posicion a la posicion inicial AFQ es AGR, ya que al ser “Q” la muesca del rotor |,
hace que gire el rotor Il a la siguiente posicidn. A partir de aqui, el rotor Il va a girar una
posicidon cada 26 posiciones del rotor | hasta llegar a la posicion AER, donde “E” es la muesca
del rotor II. Hasta aqui, llevamos 1 + 1 + 26 x 24 (626) posiciones recorridas.

La siguiente posicion a AER es BFS, ya que al ser “E” la muesca del rotor Il, hace que gire este
y el rotor Ill. Deberan pasar 25 posiciones para llegar a la posicion BGR. Una vez aqui, 26
posiciones para llegar a la posicién BHR y finalmente, se repetira esto ultimo hasta llegar a la
posicion BER. Nétese el bucle aqui, ya que ahora estamos en BER y antes en AER, por lo que
se repetira el patrén. Por lo tanto, hasta llegar a ZER recorreremos: (1 + 25 + 24 x 26) x 25
(16,250) posiciones.

La siguiente posicion a ZER es AFS. Nosotros ya visitamos al principio la posicién AFQ, pero

no las demas que hay entre AFS y esta ultima. Por lo tanto, tendremos que recorrer 24
posiciones mas.
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En total, habremos recorrido 626 + 16,250 + 24 (16,900) posiciones para llegar a la inicial.

2.4.1.2 Caso B

El caso B va a tener la misma configuracidén de rotores con la diferencia, de que el rotor I va a
tener la letra “R” como posicidn inicial (siguiente a su muesca), el rotor Il va a tener la letra
“F” como posicion inicial (siguiente a su muesca) y el rotor Ill va a tener la letra “A” como
posicidn inicial.

La siguiente posicidon no va a producir ningun giro del rotor Il, por lo que no serd hasta las 26
posiciones siguientes cuando suceda; AGR. Esto va a repetirse hasta que lleguemos a la
posicién AER, donde “E” es la muesca del rotor Il. Por lo tanto, hasta aqui llevaremos 1 + 25 x
26 (651) posiciones.

La siguiente posicion a AER es BFS, ya que al ser “E” la muesca del rotor Il, hace que gire este
y el rotor lll. Podemos notar que a partir de aqui, tenemos la misma situacién que en el
“Caso A”. Por lo tanto, para llegar a la posicion ZER serd lo mismo: 16,250 posiciones. Sin
embargo, ya no necesitaremos recorrer mas posiciones, dado que, a diferencia del “Caso A”,
no hemos hecho un giro del rotor Il en la primera posicidn y por lo tanto, no nos quedan
posiciones que recorrer.

El total de posiciones recorridas para este caso es de 651 + 16,250 (16,901) hasta llegar a la
posicién inicial.

2.4.1.3Caso C

Misma configuracion de rotores salvo que el rotor | tendra la letra “Q” como posicidn inicial
(su muesca), el rotor Il tendrd la letra “E” como posicién inicial (su muesca) y el rotor Il
tendra la letra “A” como posicidn inicial.

La siguiente posicion a la posicion inicial AEQ generara un giro de los tres rotores, debido a
gue la letra “E” es la muesca del rotor Il, quedando en la posicidon BFR. Para el siguiente giro
del rotor Il, posicion BGR, tendran que pasar 26 posiciones y asi sucesivamente hasta que el
rotor Il gire ya que se ha alcanzado la letra “E” en el rotor Il (BER). Por lo tanto, hasta este
punto habremos recorrido 1 + 1 + 25 x 26 (652 posiciones).

La siguiente posicion a BER es CFS, ya que la letra “E” es la muesca del rotor Il, por lo tanto,

los tres rotores giran. Para llegar a CGR deberan pasar 25 posiciones. Una vez aqui, pasaran
26 posiciones hasta el préximo giro del rotor Il, en la posicion CHR y esto se repetira hasta la
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posicion anterior al préximo giro del rotor I, CER. Y a partir de aqui, se repetira el bucle al
igual que teniamos con la posicion BER. Por lo tanto, recorreremos (1 + 25 + 24 x 26) x 25
(16,250) posiciones.

En total, habremos recorrido 652 + 16,250 (16,902) posiciones hasta llegar a la posicién
inicial.

2.4.2 Matrices Camino y Ruta

Recapitulando, el Caso A ha recorrido 16,900 posiciones, el Caso B 16,901 y el Caso C
16,902.

Por lo tanto, vamos a crear una matriz Ruta con 16,900 vectores con 3 elementos cada uno.
Esto simulard para cada una de las 16,900 posiciones en la ruta actual, qué posiciones tienen
los tres rotores.

Crearemos también una matriz Camino, de 2 vectores con 3 elementos cada uno. Esto es,
porque los casos B y C se comportan distinto al principio que el Caso A, debido a que
empiezan con un giro en el rotor del medio. El Caso B llenara solo un vector, y el Caso C los
2.

2.4.3 Acceso a Encriptador

Si por ejemplo, se quisiera acceder a la iteracion 123 de la ejecucién de la enigma, bastaria
mirar primero de todo el caso en el que estamos y luego acceder a la posicién de la matriz
Ruta correspondiente. Por ejemplo, si es el Caso C, para tener la posicion del rotor | (PF),
accederiamos a Ruta[121][0], para la posicién del rotor Il (PM), a Ruta[121][1] y para la
posicién del rotor Il (PS), a Ruta[121][2]. Recordemos que accedemos al vector 121 de Ruta
debido a que tenemos 2 extras almacenados en Camino ya que estamos en el Caso C.

Lo siguiente sera obtener la letra de entrada que queremos encriptar/desencriptar y
transformarla en un entero (alfb).

Por ultimo, accederemos a la matriz Encriptador[PS][PM][PF][alfb] que nos dara el resultado
previamente guardado de la encriptacion/desencriptacion.
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2.4.4 Tiempos y analisis

Para los tiempos que se van a mostrar a continuacion, se ha utilizado el mismo texto a
encriptar/desencriptar, el mismo hardware y el mismo nimero de ejecuciones del programa
que en el apartado “2.3.1.3 Tiempos y andlisis”. En la Tabla 2 pueden verse los resultados en
el orden de milisegundos.

Total Total Rutay Encriptador | Acceso a
Secuencial | Optimizado | Camino Encriptador
Enigma | Media | 927.87 903.05 0.104 17.083 885.38

Tabla 2. Tiempo total y desglosado de la Enigma paralela

Como vemos, obtenemos una pequeiia mejora con este cédigo respecto al cddigo secuencial
(un speedup del 1.03 de media). Esto es debido a que, a pesar de realizar calculos extra para
guardar resultados en las matrices Ruta, Camino y Encriptador, tanto a la matriz Ruta como a
la matriz Camino vamos a accederlas en posiciones contiguas de memoria, por lo que vamos
a ganar tiempo. Ademds, nos vamos a aprovechar de los resultados de la Enigma
previamente calculados al acceder a la matriz Encriptador.

A la matriz Encriptador nunca vamos a acceder en posiciones contiguas de memoria ya que
accedemos por posiciones de rotores, y para cada posicidon, tenemos 26 inputs Unicos
distintos de entrada (a-z).

2.5 Codigo cuda

Como dijimos en el apartado anterior, la idea de crear un cédigo optimizado era para que
podamos transformar en un cédigo cuda y que cada thread trabaje Ia
encriptacidon/desencriptacion de una letra del texto. Para ello, era necesario que cada uno
de estos threads, pudiera acceder a la posicidn con la que queria trabajar.

Este cédigo solo puede paralelizar dos subapartados que hemos visto en el apartado “2.4
Cddigo optimizado”. Se puede paralelizar el subapartado “2.4.1 Matriz Encriptador”, ya que
como se calculan todas las enigmas posibles no hay dependencias, y el subapartado “2.4.3
Acceso a Encriptador”, ya que solo accedemos a la matriz Encriptador de forma masiva. El
subapartado “2.4.2 Matrices Camino y Ruta” no se puede paralelizar, ya que la ejecucién de
una ruta de los rotores es secuencial, y una posicién actual depende de la anterior.
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2.5.1 Entorno de trabajo

2.5.1.1 Fichero a encriptar/desencriptar

Mismo libro que en las ejecuciones para los apartados “2.3 Cédigo secuencial” y “2.4 Cédigo
optimizado”.

2.5.1.2 Hardware para la ejecucion

La GPU con la que vamos a ejecutar nuestro programa en cuda es una Tesla K40c, con las
caracteristicas que se pueden observar en la Figura 31. Estas caracteristicas van a ser
importantes para asi poder pensar en un mejor aprovechamiento del trabajo de los threads
para la ejecucidn de nuestro cddigo.

Device 1l: "Tesla K40c"

CUDA Driver Version / Runtime Versicon 8.0 / 8.0

CUDA Capability Major/Minor wversion number: 3.5

Total amount of global memory: 11440 MBytes (11995578368 bytes)
{15) Multiprocessors, (192) CUDA Cores/MP: 2880 CUDA Cores

GPU Max Cleck rate: 745 MHz (0.75 GH=z)
Memory Clock rate: 3004 Mh=z

Memory Bus Width: 384-bit

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,¥,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes

Figura 31. Caracteristicas de una Tesla K40c

Sin embargo, nos faltan aun unos datos muy importantes que hacen referencia a las
caracteristicas que soporta el hardware de la GPU segln de la familia que sea la GPU en
cuestién. En nuestro caso, en la Figura 31, podemos ver que es la versidon 3.5, y sus
caracteristicas son las mostradas en la Figura 32:
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Maximun number of resident grids per device: 32
Maximun number of resident blocks per SM: 16
Maximun number of resident warps per SM: 64
Maximun number of resident threads per SM: 2048
Maximun number 32-bit registers per block: 64K
Maximun amount of shared memory per SM: 48 KB

Figura 32. Caracteristicas del hardware de la versién 3.5

2.5.2 Objetivos de una ejecucidn en cuda

Los 3 principales objetivos que hay detras de conseguir unos buenos resultados con una
ejecucién en cuda es que, mediante el cédigo consigamos:

- Una buena distribucién del trabajo para los threads. Esto significa, que si el trabajo
total a hacer lo permite, estén todos los threads de la GPU trabajando al mismo
tiempo, sin dejar threads inactivos.

- No haya divergencia en el trabajo de los threads. Esto significa, que todos los threads
ejecuten las mismas instrucciones (ausencia de sentencias if) pero con datos
distintos.

- Los accesos a memoria sean a posiciones contiguas y alineadas. Asi podemos
conseguir que varias peticiones a memoria de distintos threads de un mismo warp
sean realizadas como una Unica transaccion.

2.5.3 Paralelizar matriz Encriptador

2.5.3.1 Envio de informacion al device

La enigma necesita de varios datos para poder iterar, los hemos visto anteriormente. Los
vectores: Plug, rFast, rMiddle, RSlow, rVFast, rVMiddle, rVSlow y Volta. Estos vectores, hay
gue enviarlos al device para que pueda calcular, Figura 33. Se debera enviar también donde
almacenar los resultados del kernel, por lo que si queremos que sea la matriz Encriptador,
deberemos de enviar 26 para almacenar (recordemos Encriptador[26][26][26][26]).
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cudaMalloc((char **) &d Plug, 26);
cudaMalloc{(char **) &d rFast, 26);
cudaMalloc((char *+*) &d rMiddle, 26);
cudaMalloc((char **) &d rSlow, 26);
cudaMalloc((char **) &d rVFast, 26);
cudaMalloc((char **) &d rvMiddle, 26);
cudaMalloc((char *+*) &d rVSlow, 26);
cudaMalloc((char **) &d Volta, 26);
cudaMalloc((char **) &output, 26*%26*26%26);

cudaMemcpy(d Plug, &Plug, 26, cudaMemcpyHostToDevice);
cudaMemcpy(d_rFast, &rFast, 26, cudaMemcpyHostToDevice);
cudaMemcpy(d rMiddle, &rMiddle, 26, cudaMemcpyHostToDevice);
cudaMemcpy(d rSlow, &rSlow, 26, cudaMemcpyHostToDevice);
cudaMemcpy(d rVFast, &rVFast, 26, cudaMemcpyHostToDevice);
cudaMemcpy(d rvMiddle, &rvMiddle, 26, cudaMemcpyHostToDevice);
cudaMemcpy(d rvSlow, &rVSlow, 26, cudaMemcpyHostToDewvice);
cudaMemcpy(d Volta, &Volta, 26, cudaMemcpyHostToDevice);

Figura 33. Asignacién de memoria y transferencia de datos entre GPU-CPU

2.5.3.2 Distribucion del trabajo

De todas las combinaciones que hemos probado, las tres siguientes son las que mejores
resultados nos han proporcionado. Para la explicacién, nos basaremos en que la matriz
Encriptador, tal como ya mencionamos, ocupa 26*, es decir, 456,976 caracteres.

2.5.3.2.1 128 threads por bloque

Para saber el numero de bloques que necesitamos que contengan 128 threads, hemos de
hacer el siguiente calculo: (456,976 + 127) / 128. Siempre sumamos un el nimero de threads
Mmenos uno para que no nos quedemos cortos en el nimero de bloques. El resultado de esta
operacion son 3,571 bloques de 128 threads.

Si observamos la Figura 32 en el apartado “2.5.1.2 Hardware para la ejecucidn”, vemos que
podemos utilizar como maximo 16 bloques por SM. Ademas, si nos fijamos en la Figura 31
de ese mismo apartado, veremos que el nimero maximo de threads por SM es de 2048. Por
lo que, en este caso, podemos utilizar los 16 bloques por SM (16 x 128 = 2048 threads).

Si volvemos a fijarnos en la Figura 31, veremos que tenemos un total de 15 SMs, por lo que

vamos a tener trabajando al mismo tiempo 240 bloques (16 x 15). Y por lo tanto, van a estar
trabajando 30,720 threads paralelamente (240 x 128). Hemos conseguido utilizar el nimero
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total de threads, ya que la GPU tenia 2048 threads por SM y 15 SMs en total (2048 x 15 =
30,720).

2.5.3.2.2 256 threads por bloque

El procedimiento aqui es idéntico al del apartado anterior. El nUmero de bloques es 1,786
((456,976 + 255) / 256) y por lo tanto, 8 bloques por SM (8 x 256 = 2048, que es el maximo
de threads que se soporta en un SM).

Por lo tanto, si tenemos 15 SMs, tendremos 120 bloques de 256 threads trabajando al
mismo tiempo, es decir, los 30,720 threads que también conseguimos antes (120 x 256).

2.5.3.2.3 512 threads por bloque

El nimero de bloques es (456,976 + 511) / 512, por lo que 893 bloques totales de 512
threads. Asi que como maximo, vamos a poder utilizar 4 bloques por SM (4 x 512 = 2048
threads). Por lo que 60 bloques totales trabajando a la vez (4 x 15). Es decir, 30,720 threads
trabajando paralelamente (60 x 512).

2.5.3.3 Kernel

Una vez en el kernel, cada thread debe saber que posicion es la que calcula, Figura 34. Con
la variable pos, obtenemos la posicion del thread respecto a todo el device. Con esta,
podemos hacer referencia a todos las posiciones que necesitamos con la misma
nomenclatura que vimos en el apartado “2.4.5 Acceso a Encriptador” con la excepcidn de
que aqui he llamado “elemento” a la letra que se quiere encriptar/desencriptar en lugar de
“alfb”, como mencioné previamente en dicho apartado.

int pos = blockIdx.x * blockDim.x + threadIdx.x;

int elemento = pos % 26;
int PF = (pos [ 26) % 26;
int PM = (pos [/ n) % 26;
int PS {pos f N) % 26;

Figura 34. Posicion Encriptador mediante identificador del thread de un bloque

Por ejemplo, siendo “n” 26*26 y “N” 26*26*26, si “pos” es 1730, significa que vamos a estar
calculando el elemento Encriptador[0][2][14][14], es decir,
Encriptador[PS][PM][PF][elemento]. Cada iteraciéon de la Enigma necesita estas variables
para saber qué posicion tiene cada rotor.
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Antes de que el thread ejecute una iteracién de la Enigma, se necesita comprobar que “pos”
sea menor de los 26* elementos que tiene el vector (que simula ser la matriz Encriptador)
gue enviamos al device.

Por ultimo, una vez iterada la Enigma y adquirido el resultado, se va a guardar en la posicion
“pos” del vector que se envio al device.

2.5.3.3.1 Resultados de ejecucién

El tiempo de ejecucion para el precélculo de la matriz Encriptador se muestra en la Tabla 3.
El tiempo “Total” del precdlculo de la matriz Encriptador es el tiempo que se obtiene del
kernel + las transmisiones de informacién entre GPU y CPU de forma bidireccional + Ia
puesta en punto de dichas funciones. Los tiempos son en ms y se han cogido la muestra de
100 ejecuciones del cédigo.

Optimizado 128 th/bl 256 th/bl | 512 th/bl

Encriptador | Total Media 17.08 0.551 0.539 0.561

Kernel | Media No aplica 0.126 0.125 0.126

Tabla 3. Tiempos calculo matriz Encriptador segun distribucion

Como vemos, conseguimos los siguientes speedup, Tabla 4, respecto al cddigo optimizado:

128 th//bl 256 th/bl 512 th/bl

Encriptador Speedup 31.01 31.69 30.04
(Total)

Tabla 4. Speedup respecto Enigma paralela segln distribucién

Si nos basamos en los tres puntos vistos en el apartado “2.5.2 Objetivos de una ejecucion
en cuda”, dos de ellos los cumplimos: hay buena distribuciéon de los threads tal y como
hemos visto en el apartado “2.5.3.2 Distribucidon del trabajo” y todos ellos ejecutan las
mismas instrucciones. Sin embargo, el como se utiliza la memoria en este cddigo no es la
forma mds éptima, y es precisamente esta parte la que penaliza el rendimiento de este
programa. Para mostrar esto, vamos a sacar el uso de la memoria para la ejecucién de
256threads/bloque con el profiling de cuda “nvprof”, Figura 35. Escojo la distribucién de 256
threads/bloque ya que es la que menos tiempo de ejecucion total y de kernel tiene (aunque
solo analizemos el kernel).
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Invocations Metric Name Metric Description Min Max Avg
Device "Tesla K40c (@)"
Kernel: EnigmaWithoutPointersKernel(char*, char*, char*, char*, char*, char*, char*, char*, char*, int, int)

1 gld_efficiency Global Memory Load Efficiency 76.66% 76.66% 76.66%
1 gld_requested throughput Requested Global Load Throughput 28.376GB/s 28.376GB/s 28.376GB/s
1 gld_throughput Global Load Throughput 37.014GB/s 37.014GB/s 37.014GB/s
1 gld_transactions_per_request Global Load Transactions Per Request 1 1. 1,

1 gld transactions Global Load Transactions 128529 128529 128529
1 gst_efficiency Global Memory Store Efficiency 100.00% 100.00% 100.00%
1 gst requested throughput Requested Global Store Throughput 4.1125GB/s 4.1125GB/s 4.1125GB/s
1 gst_throughput Global Store Throughput 4.1126GB/s 4.1126GB/s 4.1126GB/s
1 gst_transactions_per_request Global Store Transactions Per Request 1 1: 1.

1 gst transactions Global Store Transactions 14281 14281 14281

Figura 35. Nvprof con métricas de memoria para ejecucion 256 th/bl

Si nos fijamos en el bloque de las lecturas, vemos que se nos indica que la eficiencia de las
lecturas es de un 76.66%, es decir, se nos entregan mds datos de los que necesitamos. Esto
es debido a que las peticiones se hacen a nivel de warp, es decir, a nivel de 32 threads. Sin
embargo, al ser vectores de 26 posiciones, hay threads del mismo warp que quieren acceder
a las mismas posiciones.

Si nos fijamos en los 28.376 GB/s (ancho de banda efectivo), vemos que si el kernel ha
tardado en ejecutarse 0.103 ms (menos de lo indicado en la Tabla 3, ya que este es el tiempo
efectivo del kernel) tenemos que se han querido leer 3,138,255 bytes en total. Si tenemos
128,529 peticiones (ya que hay 1 transaccion por peticion), tenemos que se quieren leer 24
bytes por peticidén (no llega a los 32 bytes que se nos ofrece por peticion). Incluso vemos que
hay warps en que no se necesitan leer como minimo las 26 posiciones del vector.

Si se nos indica que el ancho de banda global ha sido de 37.014 GB/s, significa que se han
entregado 4,086,424 bytes en total. Si tenemos 128,529 peticiones vemos que se entregan
los 32 bytes por peticién.

Por otro lado, si nos fijamos en el bloque de las escrituras este si tiene una eficiencia del
100%, ya que cada thread escribe en una posicion distinta del vector resultado. Por lo tanto,
se realizardn peticiones de escritura de 32 bytes y por ende, se realizardn transacciones de
32 bytes de escritura

Visto esto, sabemos que el ancho de banda de las lecturas esta “inflado”, ya que hay datos
gue trae que no se utilizan, y que sumado al ancho de banda de las escrituras tenemos que
hay un total de 32.489 GB/s. Sabiendo que la K40c tiene un ancho de banda maximo de 288
GB/s, utilizamos solo el 11.281% de este. Sin embargo, el funcionamiento del cddigo no
permite mejorar el acceso a memoria por las dos razones comentadas: se repiten accesos y
ademas, son accesos a bytes, por lo que la memoria nunca nos va a entregar transacciones
de su maxima capacidad.
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2.5.3.4 Kernel con shared memory

Acabamos de ver que el programa no permite acceder a la memoria de la forma mas
Optima. Sin embargo, también hemos visto que datos leidos son aprovechados por mas de
un thread en el mismo warp. Si esto es asi, se pueden aprovechar estos datos alin mas para
todo el bloque de threads. Utilizaremos la shared memory para ello.

Para ello, vamos a inicializar nuevos vectores, Figura 36, indicando que van a formar parte
de la shared memory.

__shared__ char sPlug[26];
__shared__ char srFast[26];
__shared__ char srMiddle[256];
__shared__ char srSlow[2
__shared__ char sVolta[z
__shared__ char sVSlow[Z26]
__shared__ char svMiddle[256];
__shared__ char sVFast[26];

5 ]

-
¥
-
E
-
k.

Figura 36. Inicializacidn de la shared memory

Para cargarlos con los mismos valores que hay en la memoria global, vamos a utilizar los
primeros 26 threads de cada bloque, tal y como se puede ver en la Figura 37. Por ultimo, se
sincronizan los threads del bloque para que ninguno empiece su ejecucion sin tener los
vectores de la shared memory completamente cargados.

if (thread < 26) {
sPlug[thread] = Plug[thread];
srFast[thread] = rFast[thread];
srMiddle[thread] = rMiddle[thread];

srSlow[thread] = rslow[thread];
sVolta[thread] = Volta[thread];
sVSlow[thread] = rvSlow[thread];

sVMiddle[thread] = rVMiddle[thread];
sVFast[thread] = rVFast[thread];

}

__syncthreads();

Figura 37. Escrituras en la shared memory dependiendo del id tel thread

2.5.3.4.1 Resultados de ejecucion
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En la Tabla 5 vamos a ver un resumen de como quedan los nuevos tiempos de ejecucion, en

ms, para cada distribucion de trabajo. Seguimos trabajando con una muestra de 100

ejecuciones.

Optimizado | 256 th/bl 128 th/bl | 256 th/bl | 512 th/bl

(no shared) | (shared) | (shared) | (shared)
Encriptador | Total | Media | 17.08 0.539 0.535 0.510 0.458
Kernel | Media | No aplica 0.125 0.107 0.107 0.106

Tabla 5. Tiempos calculo matriz Encriptador segun distribucion con shared memory

Por lo que los speedup quedarian como en la Tabla 6 escogiendo los nuevos tiempos de

ejecucion de la distribucion de 512 threads/bloque con shared memory (menor tiempo

total).

Optimizado

256 th/bl (no shared)

Encriptador
(Total)

Speedup

37.3

1.18

Tabla 6. Speedup respecto Enigma paralela y 256 th/bl de la distribucién 512 th/bl con shared memory

Si volvemos a analizar el comportamiento del acceso a memoria, vemos que paras las

lecturas vamos a aumentar la eficiencia hasta el 81.25% vy las escrituras se quedan igual

Figura 38.

Invocations

Device "Tesla K46c (8)"

Metric Description Min

Max

Avg

Kernel: EnigmawithoutPointersKernelshared(char*, char*, char*, char*, char*, char*, char*, char*, char*, int,
Global Memory Load Efficiency

R

H o

gld_efficiency

gld_requested throughput

gld_throughput
gld_transactions_per_request

gld transactions

gst transactions

gst efficiency

gst_requested throughput

gst throughput
gst_transactions_per_request

Requested Global Load Throughput

2.0126GB/s

81.25% 8

int)

1.25% 81.25%

2.0126GB/s 2.0126GB/s

Global Load Throughput 2.4771GB/s 2.4771GB/s 2.4771GB/s

Global Load Transactions Per Request 1. L. u
Global Load Transactions 7144 7144 7144
Global Memory Store Efficiency 100.00% 100.00% 100.00%
Requested Global Store Throughput 4.9515GB/s 4.9515GB/s 4.9515GB/s
Global Store Throughput 4.9517GB/s 4.9517GB/s 4.9517GB/s

Global Store Transactions Per Request 1. 1 1:
Global Store Transactions 14281 14281 14281

Figura 38. Nvprof con métricas de memoria para ejecucion 512 th/bl con shared memory

Si nos fijamos en el bloque de las lecturas, se realizan muchas menos peticiones, debido a

gue solo se realizan aquellas en que el dato que se necesita no esta en la shared memory. Si

tenemos que el ancho de banda efectivo es de 2.0126 GB/s, y el kernel se ejecuta en 0.087

ms (mas rapido que antes), tenemos que se leen 188,926 bytes (menos que antes) y si se
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realizan 7,144 peticiones tenemos que se piden 26 bytes por peticion (el numero de
elementos de los vectores).

Por otro lado, las escrituras se comportan igual en cuanto a memoria global, ya que la
shared memory no influye en estas.

Veamos en la Figura 39 cémo se comportan los accesos en la shared memory.

Invocations Metric Name Metric Description Min Max Avg
Device "Tesla K40c (0)"
Kernel: EnigmaWithoutPointersKernelShared(char*, char*, char*, char*, char*, char*, char*, char*, char*, int, int)

1 shared_efficiency Shared Memory Efficiency 12.38% 12.38% 12.38%
1 shared load throughput Shared Memory Load Throughput 356.17GB/s 356.17GB/s 356.17GB/s
L shared_load_transactions Shared Load Transactions 128529 128529 128529
1 shared_load_transactions_per_request Shared Memory Load Transactions Per Request 1z 1: 13

1 shared_store_throughput Shared Memory Store Throughput 19.797GB/s 19.797GB/s 19.797GB/s
L shared_store_transactions Shared Store Transactions 7144 7144 7144
1 shared store transactions per request Shared Memory Store Transactions Per Request 1 L3 1

Figura 39. Nvprof con métricas de shared memory para ejecucion 512 th/bl

Vemos que la eficiencia cae drasticamente con la shared memory. Esto es debido a que esta
hace transacciones de 256 bytes, mientras que las peticiones son de 1 byte por thread en el
warp, es decir, 32 bytes.

Si quisiéramos comprobar la eficiencia del 12.38% que se nos muestra tenemos que ver lo
siguiente:

- Realizamos 128,529 peticiones de lectura (1 transaccidn por peticion) y cada una de
ellas de 32 bytes, ya que cada thread quiere leer 1.

- Si sabemos que el programa tarda 0.087, tenemos un ancho de banda en lecturas de
un 43.815 GB/s.

- Realizamos también 7,144 peticiones de escritura (1 transaccion por peticién) y cada
una de ellas de 26 bytes, ya que los vectores tienen 26 posiciones.

- Porlo tanto, el ancho de banda para las escrituras es de 1.979 GB/s.

- Si sumamos el ancho de banda de la shared memory es de 375.967 GB/s. Si el ancho
de banda efectivo es de 45.794 GB/s tenemos que este es un 12.18% del ancho de
banda total. Obtenemos una desviacion del 0.2% debido a que los anchos de banda
se han tomado solo con una ejecucion.

Si nos fijamos, el nimero de peticiones de escritura de la Figura 39 concuerda con el nimero
de peticiones de lectura de la Figura 38, ya que son peticiones Unicas de lecturas (sin

repeticiones) para escribirlas en la shared memory una Unica vez por bloque.

Otro dato para fijarse es de que segun la distribucién del trabajo, los anchos de banda en la
shared memory van a variar. A mayor numero de bloques trabajando concurrentemente en
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el device, vamos a tener un mayor ancho de banda en las escrituras y uno menor en las
lecturas. Se obtiene un mayor ancho de banda en escrituras ya que las escrituras son por
bloque, y al haber mads, hay mas peticiones de estas.

Por lo tanto, el cddigo al ser asi no aprovecha el ancho de banda que puede ofrecernos la
shared memory pero, no lo necesita. Por tanto, la limitacion esta en este.

2.5.3.5 MultiGPU + shared memory

En el nodo donde se ejecutan los cédigos de este proyecto hay 2 GPUs en total, por lo que
podriamos dividir el trabajo total en estas dos, siempre y cuando, cada GPU vaya a trabajar
al 100% (o por lo menos una). En este caso esto sucede siempre, ya que como hemos visto
en el apartado “2.5.3.2 Distribucidn del trabajo”, todas las distribuciones de trabajo tienen a
los 30,7720 threads de la GPU trabajando concurrentemente y ademas, nos sobran bloques
de trabajo para encargarlos a la otra GPU.

2.5.3.5.1 Envio de informacion a los devices

Nuestra idea detras de trabajar con dos GPUs es ganar algo de concurrencia, por lo que
también podemos ganarla mediante las llamadas asincronas de transmision de datos entre
GPU y CPU.

Para conseguir esto, lo primero que hemos hecho es que la informacidn del host que habra
gue copiarla al device se genere con pinned memory, Figura 40, donde se asigna memoria no
paginada y por lo tanto, puede alcanzarse una velocidad x2 respecto a un malloc siendo este
memoria paginada.

cudaMallocHost((char**)&Plug, 26);
cudaMallocHost((char**)&rFast, 26);
cudaMallocHost((char**)&rMiddle, 26]);
cudaMallocHost((char**)&rSlow, 26);
cudaMallocHost((char**)&r\VVFast, 26):
cudaMallocHost((char**)&rvMiddle, 26);
cudaMallocHost((char**)&rVSlow, 26);
cudaMallocHost((char**)&Volta, 26);
cudaMallocHost((char**)&Encriptador, 26%26%26%26);

Figura 40. Asignacién no paginada de memoria, pinned memory
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Con las llamadas de transferencia de datos asincronas de la Figura 41, conseguimos que en
cuanto lancemos la llamada, se le devuelve el control a la CPU mientras que la GPU realiza
esta transferencia, ganando asi concurrencia.

cudaMemcpyAsync(&d Plug[e], &Plugl[@], 26, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d rFast[e], &rFast[e@], 26, cudaMemcpyHostToDevice);
cudaMemcpyAsync({&d rMiddle[@], &rMiddle[@], 26, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d rSlow[@], &rSlow[@], 26, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d r¥Fast[©], &rVFast[0], 26, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d rVMiddle[@], &rvMiddle[@], 26, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d rvVSlow[@], &rvsSlowl[0], 26, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d Voltale], &Voltale], 26, cudaMemcpyHostToDevice);

Figura 41. Transferencias asincronas de datos entre GPU-CPU

Estas transferencias habra que hacerlas dos veces, una para cada device.
2.5.3.5.2 Kernel

Al distribuirse el trabajo entre dos GPUs, vamos a tener que modificar el kernel
minimamente. El primer device ejecutara todas las posiciones que puede y el segundo las
gue quede, ya que lo mas posible es que para el segundo device, le sobren posiciones a
ejecutar.

Esto lo vamos a ver mediante un par de parametros que vamos a pasar a cada kernel:
“offset”, que nos indicara que GPU estd ejecutando el kernel y “numBloques”, que nos va a
indicar cuantos bloques tiene que ejecutar el device.

La idea detrads de esto es saber en que posicidon empieza a calcular cada device, y esto lo
obtenemos mediante la sentencia mostrada en la Figura 42.

int i = blockIdx.x * blockDim.x + threadIdx.x + offset * (numBloques - 1) * blockDim + blockDim;

Figura 42. Calculo del primer elemento a calcular para cada GPU

El resultado varia respecto al nimero de bloques que hay. Por ejemplo, si el deviceesel Oy
la distribuciéon es de 128 threads por bloque (1786 bloques), sabemos que el ultimo
elemento que va a calcular va a ser el 228,607 (blockldx.x serd 1785, blockDim.x serd 128 y
threadldx.x serd 127). Por lo tanto, el device 1 tiene que empezar calculando por la posicidn
228,608.

2.5.3.5.2.1 Resultados de ejecucion
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En la Tabla 7 se muestran los nuevos tiempos de ejecucidon para dos GPUs. Seguimos

teniendo una muestra de 50 ejecuciones y en el orden de ms.

Optimizado | 512 th/bl | 128 th/bl (2 | 256 th/bl (2 | 512 th/bl (2
(shared) GPUs) GPUs) GPUs)
Encriptador | Media | 17.08 0.458 0.114 0.118 0.117
(Total)

Tabla 7. Tiempos célculo matriz Encriptador segun distribucion con 2 GPUs

Por lo tanto, el speedup final cogiendo la nueva distribucion de 128 th/bl (las tres son
perfectamente validas, ya que la desviaciones son del orden 0.001) para el calculo de la
matriz Encriptador de nuestro cddigo de la Enigma es el de la Tabla 8.

Optimizado 512 th/bl (shared)

Encriptador (Total) Speedup 149.85 4.02

Tabla 8. Speedup respecto Enigma paralela y 512 th/bl con shared memory de la distribucion 128 th/bl con 2
GPUs

Como podemos observar, aun ejecutando con 2 GPUs sobrepasamos el 2 de speedup
respecto a la anterior version de shared memory. Esto es debido a las transmisiones
asincronas y a la concurrencia que estas permiten. Durante los resultados que hemos ido
viendo de la matriz Encriptador, se utilizaba mas tiempo en las transmisiones de datos que
en el propio kernel, y aqui, cuando permitimos concurrencia, se refleja mejor.

2.5.4 Paralelizar el acceso a Encriptador

2.5.4.1 Envio de informacion al device

Para cualquiera de los tres casos vistos anteriormente; Caso A, Caso B y Caso C, el kernel va a
necesitar toda la matriz Encriptador, todo el texto que queremos encriptar/desencriptar y
toda la matriz Ruta, Figura 43. Como el acceso a la matriz Camino se hace dos veces para el
Caso C, y una vez para el Caso A, estos, los hacemos antes de mandar a paralelizar, asi no
tenemos que enviar esta matriz al device y por ende, nos ahorramos un malloc.
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cudaMalloc((char **) &d Encriptador, 26*26*26%26);
cudaMalloc((char **) &d Data, tam);
cudaMalloc((char **) &d RutasS, 16900);
cudaMalloc((char **) &d RutaM, 16960);
cudaMalloc((char **) &d RutaF, 16900);

cudaMemcpy(d Encriptador, &Encriptador, 26+*26+*26+%26, cudaMemcpyHostToDevice);
cudaMemcpy(d _Data, Data, tam, cudaMemcpyHostTeDevice);

cudaMemcpy(d RutaS, &RutaS, 16900, cudaMemcpyHostToDevice);

cudaMemcpy(d RutaM, &RutaM, 16200, cudaMemcpyHostToDevice);

cudaMemcpy(d RutaF, &RutaF, 16900, cudaMemcpyHostToDevice);

Figura 43. Asignacién de memoria y transferencia de datos entre GPU-CPU

2.5.4.2 Distribucion del trabajo

Al igual que en el apartado “2.5.3.2 Distribucidon del trabajo”, los tres mejores resultados los
hemos obtenido con las siguientes distribuciones: 128 threads por bloque, 256 threads por
bloque y 512 threads por bloque.

En este caso, el tamafio con el que trabajaremos va a ser el tamafo del texto a
encriptar/desencriptar. Para nosotros, 235,974 caracteres. No se va a hacer una explicacién
detallada, ya que se realiz6 en el apartado “2.5.3.2 Distribucion del trabajo” y los calculos
son idénticos.

2.5.4.2.1 128 threads por bloque

En total hay 1,844 bloques de 128 threads cada uno ((235,974 + 125) / 126), 16 bloques
trabajando por SM vy por lo tanto, 240 bloques trabajando en el device: 30,720 threads
trabajando.

2.5.4.2.2 256 threads por bloque

En total hay 922 bloques de 256 threads cada uno ((235,974 + 255) / 256), 8 bloques
trabajando por SM vy por lo tanto, 120 bloques trabajando en el device: 30,720 threads
trabajando.

2.5.4.2.2 512 threads por bloque

En total hay 461 bloques de 512 threads cada uno ((235,974 + 511) / 512), 4 bloques

trabajando por SM y por lo tanto, 60 bloques trabajando en el device: 30,720 threads
trabajando.
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2.5.4.3 Kernel

Creamos tres kernels para cada uno de los casos. Estos kernels se diferencian en el primer
elemento que se accede de la matriz Ruta. En el Caso C, se accede al primer elemento de
Ruta, ya que la posicion inicial de los rotores y la siguiente (donde habia cambio en el rotor
central) estan guardadas en la matriz Camino que ya se ha accedido. En el Caso B se accede
también a la primera posicion de Ruta, ya que en Camino solo guardamos la posicidn inicial
de los rotores. Por ultimo, con el Caso A tenemos que acceder a la segunda posicién de Ruta,
ya que en la primera, tenemos la posicidn inicial de los rotores.

Si por ejemplo cogemos de ejemplo el kernel del Caso B, Figura 44, vemos como vamos a
acceder con la variable

“wz:n
J

a la primera posicion del vector, ya que el primer thread del

ausn
.

bloque 0 nos va a devolver el valor de 0 para la variable

int 1 = blockIdx.x * blockDim.x + threadIdx.x;

if (i = tam) {
char PS5, PM, PF, alfb;
int j = i%16908;

PS5 = RutaS[jl;
PM = RutaM[jl;
PF = RutaF[jl;

alfb = Datal[il;
Data[i] = Encriptador[P5*26*26%*26 + PM*26*26 + PF*26 + alfb-'A'];

Figura 44. Kernel de acceso a Encriptador para el Caso B

Por lo tanto, para el Caso C, tendremos la instruccién “int j = (i-1)%16900” y para el Caso A la
instruccién “int j = (i+1)%16900".

Una vez tenemos la posicion obtenida de los tres rotores, conseguimos la letra que
gueremos encriptar/desencriptar del texto y accedemos a la matriz Encriptador, tal y como

vimos, previamente calculada.

En definitiva y tal como vemos en la Figura 44, lo que paralelizamos es el acceso a memoria
del vector Ruta, del texto que queremos encriptar/desencriptar y de la matriz Encriptador.

2.5.4.3.1 Resultados de ejecucion
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El resultado de los tiempos de ejecucion para el acceso a Encriptador es el que se muestra
en la Tabla 9. Muestra de 100 ejecuciones del cédigo y en el orden de ms.

Optimizado 128 th/bl | 256 th/bl | 512 th/bl

Acceso Total Media 885.38 0.353 0.356 0.358

Kernel | Media No aplica 0.047 0.047 0.047

Tabla 9. Tiempos acceso Encriptador segun distribucidon

Como vemos, conseguimos los siguientes speedup, Tabla 10, respecto al cddigo optimizado.

128 th/bl 256 th/bl 512 th/bl

Acceso (Total) Speedup 2508.16 2487.02 2473.13

Tabla 10. Speedup respecto Enigma paralela segun distribucién

Vemos que el speedup es muy elevado en este caso. Esta optimizacidn se comporta mejor
gue la que vimos en el apartado “2.5.3.3.1” donde miramos los resultados de los tiempos
sin utilizar shared memory ni multiGPUs para el precalculo de la matriz Encriptador. Si nos
volvemos a basar en lo que se mostré en el apartado “2.5.2 Objetivos de una ejecucién en
cuda”, volvemos a cumplir por lo menos, dos de los tres objetivos que propusimos: tenemos
una buena distribuciéon del trabajo (todos los threads tienen trabajo) y no hay practicamente
divergencia en el camino de estos (solo en los ultimos).

Veamos cdmo se comportan los accesos a memoria para este kernel, Figura 45. Nos
basaremos en la distribucidn de 128 th/bl que es la que mejor speedup nos ha dado.
Invocations Metric Name Metric Description Min Max Avg

Device "Tesla K40c (0)"
Kernel: kernelC(char*, char*, char*, char*, char*, int)

1 gld_efficiency Global Memory Load Efficiency 15.32% 15.32% 15.32%
1 gld_requested_throughput Requested Global Load Throughput 38.700GB/s 38.700GB/s 38.700GB/s
1 gld_throughput Global Load Throughput 252.68GB/s 252.68GB/s 252.68GB/s
1 gld transactions per request Global Load Transactions Per Request 2.742915 2.742915 2.742915
1 gld_transactions Global Load Transactions 181145 181145 101145
1 gst_efficiency Global Memory Store Efficiency 50.00% 50.00% 50.00%
1 gst requested throughput Requested Global Store Throughput 7.7399GB/s 7.7399GB/s 7.7399GB/s
1 gst_throughput Global Store Throughput 15.481GB/s 15.481GB/s 15.481GB/s
1 gst_transactions_per_request Global Store Transactions Per Request 1.249898 1.249898 1.249898
1 gst_transactions Global Store Transactions 9218 9218 9218

Figura 45. Nvprof con métricas de memoria para ejecucion 128 th/bl

Como podemos observar, aunque la mejora haya sido tan grande, la eficiencia en las lecturas
es muy baja, 15.32%. Esta eficiencia va a variar conforme que tipo de caso se esté
ejecutando (A, B, C), vistos en el apartado “2.4.1 Matriz Encriptador”. El Caso A, accede a la
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vector Ruta con un offset de 1, el B con un offset de 0 y el C, también con un offset de 0. Si el
el offset es 0 no hay problema, ya que los accesos van a estar alineados a 32, pero si
tenemos un offset de 1, el thread 31 del warp va a acceder a la posicidn 32 del vector, por lo
tanto, en ese caso serdn 2 transacciones de lectura por peticion de ella.

También vamos a tener alineamiento o no para acceder al vector Data dependiendo del
caso. En el Caso C, la primera posicién que se quiere acceder del vector Data en el kernel es
el 1, ya que la posicidon 0 ya se ha calculado fuera de él. Por lo tanto, tenemos un offset de 1.

Finalmente, la que mads penalizacidon nos da es el acceso a la matriz Encriptador, ya que su
posicion depende de la letra del texto que queremos encriptar/desencriptar, y esta no se
puede saber. Por lo tanto, podriamos decir que los accesos son aleatorios.

Para las lecturas, escribimos en la misma posicion del vector Data que la que hemos leido
para obtener la letra (transformamos la letra). Por lo tanto, al ser el Caso C el Unico que tiene
offset en el acceso a Data, tenemos que la eficiencia de las lecturas es del 50%, ya que por
peticidn, se van a generar 2 transacciones.

Por lo tanto, vemos que los accesos a memoria no son precisamente buenos, sin embargo, el
speedup que obtenemos es muy bueno. Esto se debe a que ocultamos la latencia con
memoria de una forma dptima, ya que las instrucciones de los threads son Unicamente
accesos a memoria.

2.5.4.4 MultiGPU

Igual que vimos antes, antes de todo hemos de mirar si se van a utilizar por lo menos una de
las GPUs al 100%. Si revisamos el apartado “2.5.4.2 Distribucion del trabajo”, todas las
distribuciones tienen los 30,720 threads trabajando concurrentemente. Ademas, nos sobran
bloques de trabajo para que se encargue la otra GPU.

2.5.4.4.1 Envio de informacion a los devices
Como ya vimos, nos vamos a beneficiar de las transmisiones de datos asincronas. Por lo

tanto, lo primero va a ser asignar memoria no paginada en el host con pinned memory,
Figura 46 y luego haremos las transferencias pertinentes dos veces (una por GPU), Figura 47.

cudaMallocHost( (char**)&RutaS, 1690@);
cudaMallocHost( (char**)&RutaM, 16960):;
cudaMalleocHost((char**)&RutaF, 16960):
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cudaMalleocHost({char**)&Data, strlen({Datalux)):
Figura 46. Asignacién de memoria no paginada, pinned memory

cudaMemcpyAsync(&d Encriptador[0], &Encriptador[@], 26*26+*26*26, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d Data[0], &Datal[@], tam, cudaMemcpyHostToDevice);

cudaMemcpyAsync(&d RutaS[8], &RutaS[e], 16208, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d RutaM[©], &RutaM[@], 16208, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d RutaF[@], &RutaF[@], 16200, cudaMemcpyHostToDevice);

Figura 47. Transferencia de informacién entre GPU-CPU

2.5.4.4.2 Kernel

Al igual que vimos en el apartado “2.5.3.5.2 Kernel”, tenemos que dividir el trabajo total en
dos GPUs. Este numero no lo sabemos fijo como pasaba en ese apartado, ya que el tamafio
varia segun el fichero de texto que queramos encriptar/desencriptar. Seguiremos pasando
los parametros de tipo entero que llamamos “offset” Y “numBloques” para saber qué GPU
estd ejecutando ese kernel y por ende, desde donde tiene que calcular, Figura 48 para el
Caso Ay By Figura 49 para el Caso C.

int i = blockIdx.x * blockDim.x + threadIdx.x + offset * (numBloques - 1) * blockDim + blockDim;
Figura 48. Primer elemento a calcular por device. Casos Ay B
int i = blockIdx.x * blockDim.x + threadIdx.x + offset * (numBloques - 1) * blockDim + blockDim - 1;

Figura 49. Primer elemento a calcular por device. Caso C

El Caso C es distinto, porque como ya comentamos, el primer thread accede a la segunda
posicidn de Data, y por lo tanto, siempre hay un offset de 1.

2.5.4.4.2.1 Resultados de ejecucién

En la Tabla 11 se muestran los nuevos tiempos de ejecucién para dos GPUs. Seguimos
teniendo una muestra de 50 ejecuciones y en el orden de ms.

Optimizado | 128 th/bl 128 th/bl 256 th/bl | 512 th/bl
(2GPUs) | (2GPUs) | (2 GPUSs)

Acceso Media 885.38 0.353 0.134 0.134 0.132
(Total)
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Tabla 11. Tiempos acceso Encriptador segun distribuciéon con 2 GPUs

Por lo tanto, conseguimos los siguientes speedup, Tabla 12, respecto al cédigo optimizadoy
a la ejecucion de 128 threads por bloque ejecutando el kernel en una sola GPU.

Optimizado 128 th/bl

Acceso (Total) Speedup 6707.43 2.67

Tabla 12. Speedup respecto Enigma paralela y 128 th/bl de la distribucion 128 th/bl con 2 GPUs

Seguimos sobrepasando el 2 de speedup aun ejecutando con el doble de GPUs que la
version de 128 th/bl, por lo que las transferencias de informacion asincronas siguen
ayudandonos a mejorar.

2.6 Resultado de ejecucidn final

Si hacemos una tabla resumen con la progresién que ha ido adquiriendo el cédigo
optimizado a lo largo de los distintos apartados, obtenemos lo que podemos ver en la Tabla
13. Tiempos en ms.

Optimizado 2 GPUs
Encriptador Total Media 17.08 0.114
Kernel Media No aplica No considerado
Acceso Total Media 885.38 0.132
Kernel Media No aplica No considerado
Total Media 903.05 0.730

Tabla 13. Tiempo total de la Enigma paralela y la ejecucién con 2 GPUs

Por lo que el speedup final del cédigo de la Enigma es de un 1237.06.

3. Maquina Bombe
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Cuando los ingleses se dieron cuenta de que el ejército aleman estaba encriptando sus
mensajes, empezaron a idear como harian para desencriptarlos, y asi, ganar tiempo para
responder al movimiento de tropas.

Cuando se interceptaba un mensaje encriptado, si este queria ser desencriptado, se
necesitaba tener la configuracion inicial de la Enigma para ese dia, ya que como hemos
mencionado, la Enigma trabaja en las dos direcciones con la misma configuracion
(encripta-desencripta).

3.1 Complejidad de la Enigma

Si hacemos una serie de calculos, podemos observar las combinaciones totales que podia
tener la Enigma, y por lo tanto, ver el problema al que se enfrentaban los ingleses para
conseguir la configuracidn inicial.

Partiendo de tener 5 rotores totales y pudiendo poner 3 de estos 5 en cualquier orden (sin
repetir), tenemos 60 posibles combinaciones para la seleccién de los rotores (5 x 4 x 3).

Una vez teniamos los rotores colocados, cada uno de ellos podia tener su letra inicial
distinta, por lo que teniamos 17 576 posibles combinaciones iniciales (26 x 26 x 26).

Por ultimo, y el mayor grado de complejidad que tenia la Enigma, el Plugboard. Sabiendo
gue el maximo de parejas que se podian conectar en el Plugboard era de 10, tenemos un
total de 150 738 274 937 250 combinaciones posibles (26!/(6! x 10! x 2710))[19]. Solo
cuenta las combinaciones de 10 parejas porque es la mas complicada de crackear debido a
su complejidad y por lo tanto, eran las que siempre utilizabanm la milicia nazi, tal como
vimos en la Figura 22 del apartado “2.2 Funcionamiento”. Mas adelante, nosotros
tendremos en cuenta parejas menores de 10.

Si combinamos todo esto, existian 158 962 555 217 826 360 000 combinaciones posibles
para la configuracion inicial.

La primera forma para resolver esto y que a todos se nos ocurre es, a partir de tener una
réplica de una maquina Enigma probar todas las configuraciones iniciales para esta y ver si lo
gue vamos desencriptando cobra sentido, es decir, fuerza bruta.

Esto es inviable, por dos motivos: el primero es por el nUmero que acabamos de ver el total

de combinaciones posibles; estas combinaciones hay que probarlas a mano. El segundo,
para cada combinacién, ir mirando si lo que vamos desencriptando tiene sentido. Ademas
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de todo esto, no nos debemos de olvidar de que la configuracién inicial de la Enigma
cambiaba a diario, por lo que el descubrir la configuracién inicial de ese dia debia de
conseguirse como mucho en horas, antes del préximo cambio.

3.2 Soluciodn teodrica

En este punto, habia que pensar en un método que evitase probar todas las combinaciones
posibles. El camino que habria que seguir es el de algin método que nos haga descartar
combinaciones hasta acercarnos lo maximo posible a la correcta.

El matematico britanico Alan Turing, se dio cuenta, de que era muy posible que los mensajes
encriptados de los aleman siguieran un mismo patrén en algunas partes del texto[20]. Esto,
era muy posible que ocurriera ya que se habian observado el comportamiento de los nazis y
sobre todo, los discursos de los lideres y la respuesta de los seguidores.

Por ejemplo, sabemos que el gesto del saludo fascista iba la mayoria de veces acompafiado
de la frase Heil Hitler!. También, se habia observado que se saludaba a los oficiales
superiores con la frase Sieg Heil. Por lo tanto, la primera frase era muy posible que
apareciese en las partes finales de los mensajes o la segunda frase, en la parte inicial de
estos.

Sin embargo, las fuerzas de inteligencia de la parte aliada descubrieron que los mensajes
militares alemanes seguian el mismo patrén al principio de cada mensaje: daban el parte
meteoroldgico para ese dia[20].

A partir de aqui, podiamos realizar los primeros pasos para obtener lo que habiamos
comentado al inicio de este apartado: buscar combinaciones que nos dieran contradicciones
para poder descartarlas. Vamos a ver un ejemplo de esto.

Imaginemos que tenemos un mensaje que nos llega encriptado con el siguiente aspecto:

QFZWRWIVTYRESXBFOGKUHQBAISEZ....

Y ahora, imaginemos que en ese momento, se sabia que habia movimiento de tropas y
enfrentamiento en el Golfo de Vizcaya. Podriamos suponer la frase Wettervorher sage
Biskaya, que significa “Prediccién del tiempo Vizcaya”. Si sabemos que todo lo relacionado
con el tiempo era al principio del texto, podriamos suponer lo que se observa en la Figura
50. De ahora en adelante, esta hipdtesis de texto la llamaremos “crib”, tal y como hacian los
ingleses[20].
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GFZWEREWIVIYRESABFOGKUHDBAILS EZ
WETTERVORHERSAGEE: IS KAXA

Figura 50. Posicionamiento del crib respecto al texto encriptado[20]

Con esto lo que se quiere demostrar es que cuando desencriptamos, la parte de arriba del
texto sea la de abajo. Sin embargo, hay un problema. Como podemos observar en la Figura
50, en la posicién 13 hay tanto una S arriba como una S abajo, y esto es imposible, ya que la
enigma cuando encriptaba una letra jamdas devolvia la misma (ya que el reflector generaba
un camino distinto al de la ida). Por lo tanto, teniamos que desplazar el texto una posicion
hasta que esto no ocurriese, Figura 51.

QO FZWERWIVIYRESXBFOGKUHOQBAILISEZ
WETTERVORHERSAGEBISKAYA

Figura 51. Desplazamiento del crib una posicidn[20]

En la posicion 8 hay dos Vs, en la 12 dos Es y en la 24 dos Aes. Por lo que deberiamos seguir
desplazando el texto hasta que no hubiera ninguna letra duplicada y conseguir lo que se
muestra en la Figura 52.

BEEZWRNIVIYRESAEABEFOGKXUHNHOBAIBEZ
WETTERVOGRHERSAGEBT SKATYA

Figura 52. Desplazamiento del crib hasta no encontrar letras repetidas[20]

Tal y como he mencionado, queremos que cuando desencriptemos la parte
“RWIVTYRESXBFOGKUHQBAISE” el resultado sea “WETTERVORHERSAGEBISKAYA”. Para eso,
vamos a escoger la letra que mas aparezca en ambos textos y “simular” que la conectamos
con otra letra en el Plugboard. Por ejemplo, vemos que la letra que mas se repite en la
Figura 52 es la “E”. Podemos empezar haciendo que la “E” y la “A” estén conectadas en el
Plugboard. Esto significa, que cada vez que en el texto veamos una E, a la Enigma le entrard
una Ay viceversa hasta que se llegue a una contradiccién o no.
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Un ejemplo de contradiccion seria por ejemplo: en la posicion 2, nosotros pulsamos la tecla
“E” y a la Enigma le entra una “A” debido a la conexion que hemos dicho EA (y viceversa) del
Plugboard, y saca una “P”. Como para la entrada “E” hemos forzado de que la salida debe de
ser una “W” significa que hay la conexion PW (y viceversa) en el Plugboard. Si seguimos
iterando y para la posicién 14, hemos descubierto varias conexiones de Plugboards y una de
ellas es GT (y viceversa), a la Enigma le va a entrar la letra “T”, debido a la Ultima conexién
gue acabo de comentar. Si para esta ejecucion, la salida es por ejemplo, una 'V, significa que
estamos diciendo que existe la conexidon AV (y viceversa), pero nuestra hipdtesis inicial era
que “A” estaba conectada “E”, por lo que hay una contradiccién.

Ademas de esto ultimo, Alan Turing se dio cuenta de que si llegamos a una contradiccion,
todas las hipdtesis del camino pueden ser descartadas también y no hace falta volver a
mirarlas, por lo que las conexiones EA, AE, GT, TG, AV, VA y todas las del camino son
erréneas[21].

En este punto, si se han comprobado todas las posibles combinaciones de Plugboard para la
letra “A” y todas han resultado contradiccidn, significa que o el texto debe de ser desplazado
aun mas (realmente no estard en esta porcién del texto que hemos supuesto) o que la frase
gue hemos supuesto no es la correcta o no contiene suficientes letras diferentes como para
descubrir contradicciones.

Alan Turing, junto a su equipo se dio cuenta de que aun con este método, era lento sacar la
configuracién inicial de la Enigma, ya que habia igualmente que comprobar muchas
operaciones. Por eso, idearon una maquina que hiciera estos descubrimientos de
conexiones del Plugboard mediante la corriente, y por lo tanto, de una forma mucho mas
rapida y eficaz. A esta maquina se la conoce como la Bombe.

3.3 Componentes de la Bombe

La Bombe era una maquina que albergaba tres hileras de 12 conjuntos (horizontales) de 3
rotores (verticales), Figura 53. Es decir, cada conjunto de 3 rotores simulaba una maquina
Enigma independiente. Por lo tanto, 36 maquinas Enigma. Esto permitia trabajar con cribs de
una longitud maxima de 36 letras, es decir, una Enigma por cada pareja de letras del crib y
del texto encriptado.
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Figura 53. Dibujo del panel frontal de la Bombe[22]

3.4 Puesta a punto de la Bombe

Una vez visto el panel frontal de la Bombe, hay que conocer el panel trasero (el conexionado
eléctrico) para ver como realmente funcionaba y ademas, nos servira para transformar este
funcionamiento en el cdédigo que simulara la ejecucién de la Bombe.

Para la explicacion, vamos a suponer que el abecedario va estar reducido a 8 letras (A-H).
Esto va a simplificar la explicacidn y las Figuras. Vamos a suponer entonces, que tenemos el
texto encriptado abajo y nuestro crib arriba en la Figura 54.

1 2 3 4 5 6 7 8 9
B E A C HHE A D

E DB G E A HDB

Figura 54. Posicionamiento del crib respecto al texto encriptado para un alfabeto reducido[23]

La maquina Bombe tenia 8 grupos de 8 cables cada grupo[23]. Cada grupo representaba una
letra de las 8 totales, y cada cable una letra de las 8 totales. Por ejemplo, el grupo “A”
contenia 8 cables que representaban las letras a-h, el grupo “B” contenia 8 cables que
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representaban las letras a-h, y asi sucesivamente, Figura 55. Esto servia para simular el
Plugboard de la maquina Enigma; si queriamos que “A” y “R” estuvieran conectadas en el

o _n
r

Plugboard, la letra del grupo “A” era en la que se inyectaba la corriente.

diagonal board

///
The a wire I
in the B cable
connecting to | [
the b wire
in the A cable [

Figura 55. Conexionado en diagonal de la Bombe[23]

Ademads, sabemos que el Plugboard funciona a dos bandas; si “A” estd conectada con “R”,
significa que “R” estd conectada con “A”. Es por esto, que se hace la conexién en diagonal
qgue vemos en la Figura 55. Tal y como estd explicado en inglés, si por ejemplo, queremos
que “A” esté conectada con “B”, se inyectard corriente en el cable “b” del grupo “A”. Este
cable también tendra que estar conectado al cable “a” del grupo “B” para que también haya
corriente en dicho cable.

Una vez tenemos el cableado colocado, pasamos a posicionar correctamente las Enigmas
(conjunto de tres rotores en vertical).

Tal y como mencioné en el apartado anterior, “3.3 Componentes de la Bombe”, cada Enigma
ejecutaria un par de letras de nuestro conjunto que creiamos que podia ser el correcto. Si
nos basamos en este caso actual, el crib tiene un total de 9 letras, por lo que solo haria falta
colocar 9 Enigmas.

Cada Enigma la tenemos que colocar con una posicidn inferior a la siguiente, o visto de otra

forma, la préxima que coloquemos con una posicidon siguiente a la actual, ya que es el
comportamiento de las iteraciones de una Maquina Enigma. Si seguimos trabajando con la
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disposicion de la Figura 54, si colocamos la primera Enigma (la que calcula la entrada “E” y la
salida “B” o viceversa) en la posicion AAA, la segunda Enigma (que calcula la entrada “D” y la
salida “E” o viceversa) debera estar en la posicion AAB y asi sucesivamente, Figura 56.

drum cables connected by drum's scrambler scrambler position in crib-ciphertext pairing drums letter in 12 o'clock position
top B and E 1 A
top DandE 2 B
top Aand B 3 C
top Cand G 4 D
top Eand H 5 E
top Aand H 6 E
top Eand H T2 G
top Aand D 8 H
top B and D 9 A

middle B and D 9 B

Figura 55. Posicion inicial de cada Enigma respecto a la posicion en el texto[23]

Como podemos observar, se incrementa siempre el rotor “top”, es decir, el rapido. Y cuando
se vuelve a llegar a la “A” en este, significa que ha dado una vuelta, por lo que
incrementamos en uno el rotor “middle”.

Por lo tanto, el conexionado de las Enigmas (representado en cuadrados y haciendo
referencia a la Figura 55) con el cableado seria el de la Figura 56. Como vemos, cada
cuadrado tiene indicado la posicidn del texto con el que estamos trabajando y la posicion
inicial de los rotores. La Enigma con un “1”, trabajaria el descubrimiento de contradiccién
para las letras EB y viceversa (por eso estd conectada entre los grupos “E” y “B”, ya que
forzamos que si pulsamos la tecla “E”, la salida definitiva sea la “B” y viceversa. La Enigma
con un “2” para las letras DE y viceversa, la “3” con las letras BA y viceversa y asi
sucesivamente.
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Figura 56. Cableado y colocacion de las Enigmas[23]

También podemos observar en la Figura 56, que colocan un registro en un grupo de cables.
Este, se coloca en el grupo que representa la letra que mas aparece en el texto que estamos
trabajando tal y como también hicimos en el apartado “3.2 Solucién teédrica”, ya que sera
este registro el que nos indique si hay contradicciones o no.

3.5 Funcionamiento

Como acabamos de decir, vamos a trabajar con la letra “E”, ya que es la que mds aparece en
nuestro texto, Figura 54. Y vamos a empezar creando la hipétesis de que “E” esta conectada
con “A” (primera letra del alfabeto que no es la “E”) y viceversa.

1 2 3 4 5 6 7 8 9
B E A C HMHE A D

E DB G E A HD B

Figura 54. Posicionamiento del crib respecto al texto encriptado para un alfabeto reducido[23]
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Lo primero que habremos de hacer una vez hecho el conexionado y la puesta de los rotores,
serd inyectar voltaje por el cable de nuestra hipdtesis, en nuestro caso, el cable “a” del grupo
“E”, marcado de color negro en la Figura 57 (no hay que fijarse por ahora en los otros cables
en negro). Si que nos hemos de fijar en que este cable negro, sigue el conexionado en
diagonal que vimos en el apartado anterior y por lo tanto, el cable “e” del grupo “A” también
estd en negro (con voltaje), creando las conexiones del Plugboard AE y viceversa.

I

e

7
W)
Wil

—— ] : _hE EE_:::_: ui —— i = = E
.. in *h%_ :"::.-__--.___::__: .;:\“H-“-': n ‘*\\- .. ]
“h"""--..._, \ \‘ -\*-“ -—-h___ﬁ__h_h
9 ABA 5 AAE
=:n ;
8 AAH 7 AAG
——iamn =
=f =
8 AAF
— i . )
4 AAD
\ uﬁgf s h
=is 1
|| 3 AAC || 2 AaB
1 AAA
S
A B C D E \ F G H
the a wire In test
the E cable register

Figura 57. Muestra de contradicciones[24]

Como vimos en el apartado “3.2 Soluciéon tedrica”, la idea de la Bombe es descubrir
contradicciones mediante descubrir incongruencias en los Plugboards, y esto es
precisamente lo que se ve en la Figura 57.

Si volvemos a fijarnos en el cable negro (cable “a” del grupo “E”), veremos que es entrada de

la Enigma etiquetada como 1 AAA, por lo que ejecutara el par de letras en la posiciéon 1 de la
Figura 54 con los rotores en la posicion AAA. Este par de letras son: “B” y “E”. Como solo
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tenemos voltaje en uno de los cables del grupo “E” solo sera este el que funciona como

entrada para la Enigma. Veamos en la Figura 58 una ampliacién de dicha Enigma.

1 AAA

Figura 58. Interconexionado de la primera Enigma[24]

La entrada de la Enigma seria el cable “a” del grupo “E”, es decir, la primera entrada de
arriba a la derecha. Si seguimos la trayectoria del conexionado interno (esta simplificado al
de una Enigma real), la salida es la tercera de la izquierda, por lo que seria el cable “c”.

Por ahora tenemos, que se pulsa la tecla “E”, y como esta, estd conectada a la letra “a”, es
esta ultima la que le entra a la Enigma. La Enigma itera y saca una “c”. Sin embargo, en
nuestras suposiciones de la Figura 54, nosotros forzamos a que cuando presionamos la tecla
“E”, la Enigma nos devuelva una “B”, por lo que suponemos, que “B” y “c” estan conectadas
mediante el Plugboard. Por lo tanto, y como se vuelve a ver en la Figura 57, a parte de tener
voltaje en el cable “c” del grupo “B”, le llega también al cable “b” del grupo “C” mediante el
conexionado en diagonal.

Con esto ultimo, hemos inyectado voltaje en dos grupos mas, por lo que las Enigmas
conectadas con dichos grupos, van a tener corriente para computar una salida. Por ejemplo,
hemos inyectado voltaje en el cable “c” del grupo B, por lo que las Enigmas que estén
conectadas a ese grupo computaran, en este caso tanto la 3 AAC como la 9 ABA.

Para que se entienda del todo las contradicciones, veamos lo que sucede con la Enigma 3
AAC, Figura 59.
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Figura 59. Interconexionado de la tercera Enigma[24]

Como hemos dicho, le va a entrar la letra “c” del grupo “B”, por lo que es la tercera entrada
de la derecha. Si seguimos el conexionado, computara la primera salida de la izquierda, es
decir, una “a”. Dado que esta Enigma esta conectada con el grupo “A”, significa que la letra
“A”, estara conectada con “a”. Esto podria ser correcto, ya que si ocurre esto es lo mismo que
no conectar la letra “A” con nada en el Plugboard. Sin embargo, al principio dijimos que las
letras “E” y “A” estaban conectadas, por lo que tenemos una contradiccién. Ademas, dos
cables del grupo “A” pasaran a tener voltaje, el “e” que le llegd de la primera iteracioén vy el
“a” de esta.

Sabemos que hay una contradiccion porque estamos analizando con un dibujo, pero la
Bombe lo detectaba mediante el registro que pusimos en el grupo “E”. Es decir, se esperard a
ver si se llenan mas cables con voltajes y se parard (lo veremos en el proximo apartado),
como le ha pasado al grupo “A”.

En la Figura 57, vemos que al final se han llenado de voltaje todos los cables del grupo “E”
menos uno, lo que significaria que la letra “E”, estaria conectada con “a”, “c”, “d”, “e”, “f”, “g”
y “h”, cosa que no es posible.

En resumen, la idea que vemos es que nosotros solo inyectamos voltaje en nuestra hipdtesis

inicial y la maquina nos descubre si es correcta o no llenando con mas voltaje mas cables del
mismo grupo.

3.5.1 Parada de la Bombe
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La Bombe tenia un mecanismo de parada Unicamente cuando en el registro que hemos
colocado en el grupo de nuestra hipdtesis, en nuestro caso el grupo “E”, se detectaban solo
1 cable con voltaje (el de nuestra hipodtesis inicial) o 25 cables con voltaje.

Si solo veiamos a nuestro cable con el cual habiamos inyectado voltaje significaba que el
grupo de nuestra hipdtesis no habia recibido ninguna contradiccion por ahora. Si por el
contrario, veiamos que nuestro grupo de la hipdtesis tenia 25 cables con voltaje, como lo
visto en la Figura 57, significaba que si habia tenido contradicciones excepto para un cable,
el gue no tenia voltaje y este podia ser la hipdtesis correcta. En la Figura 60 podemos ver si
inyectamos solo con voltaje el cable que no habia salido con voltaje en la Figura 57, vemos
gue no se crea ninguna contradiccién y la Bombe también pararia.

Figura 60. Muestra de no encontrar contradicciones[24]

Con cualquiera de las dos opciones, la Bombe entonces miraba si se cumplia lo mismo en los
demas grupos (si solo tenian 1 cable con voltaje o 25), y si era asi, se paraba y entonces un
encargado anotaba la posicién de los rotores de cada enigma y el cable con voltaje o sin
voltaje de cada grupo de cables.

Si la bombe ya habia hecho una iteracién de descubrimiento de contradicciones y no se daba
ninguna de las dos situaciones anteriores, la Bombe incrementaba la posicion de cada
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Enigma en 1, se volvia a inyectar voltaje en el cable de nuestra hipotesis inicial y volvia a
descubrir contradicciones. Esto era, porque la posicion de los rotores no era la correcta en la
configuracidn inicial de la Enigma que habian utilizado para encriptar el mensaje.

Si se llegaba a la uUltima posicion de los rotores y la Bombe aun no habia parado podia
significar tres cosas: la primera, es que a lo mejor nuestro crib no estaba correctamente
colocado respecto al texto encriptado y por lo tanto, teniamos que desplazarlo ain mas. La
segunda, era que a lo mejor este crib no era correcto, y la tercera, que los rotores no eran
los correctos o su orden no era el correcto.

Aqui nos podemos dar cuenta de la complejidad que tenia esta operacién, por eso,
utilizaban mas de una Bombe, para probar distintos rotores, con distinto orden, distinta
posicidn del crib...

3.6 Codigo secuencial

Con el cddigo secuencial hemos tratado de ser lo mas fiel posible a la maquina Bombe, con
la diferencia de que al tener una maquina tan potente como son los ordenadores de hoy en
dia, simulamos una Bombe que pruebe con todas las posibles combinaciones de rotores.
Recordemos que en aquella época, el orden de los rotores y qué rotores poner lo hacian a
mano.

Ademads, para el cribe que estamos probando, se haran un total de 50 desplazamientos, ya
gue es dentro de las primeras 50 letras de un texto encriptado donde se encontrara el parte
meteoroldgico, tal y como comentamos anteriormente.

En la Figura 61 puede verse el cuerpo principal de nuestro cddigo secuencial para la maquina
Bombe. El primer bucle hace referencia a los dos tipos de reflectores que puede tener una
maquina Enigma. Los tres siguientes hacen todas las posibles combinaciones de tres rotores
con los 5 totales que hay, mirando que no se repitan ninguno. Una vez tenemos estos datos,
se inicializa una Enigma.
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for (int reflector=1; reflector<3; reflector++)
for (int slow=0; slow<5; slow++)
for (int middle=0; middle<5; middle++) {
if (middle != slow) {
for (int fast=0; fast<5; fast++) {
if (fast != middle && fast != slow) {
EnigmaSet ConfigEnigma = {fast, middle, slow, reflector + 'A', 'A', 'a', 'A", e
InitEnigmaMachine(ConfigEnigma) ;
for (int p=0; p<50; p++) {
int duplicated = 0;
for (int i=0; i<strlen(DataIn)-1 && !duplicated; i++)
if (DataIn[i] == DataIn2[i+p])
duplicated = 1;
if (!duplicated) {
for (int s=0; s<26; Ss++)
for (int m=0; m<26; m++)
for (int f=0; f<26; f++) {

Figura 61. Cédigo del cuerpo de la Bombe

Esta Enigma recorrerd las 50 primeras posiciones del texto, tal y como dijimos. Mirara si es
una posicién posible (es decir, comprobara que no hay duplicacidon de letras, igual que
hicimos en el apartado “3.2 Solucién tedrica” y probara si se genera contradicciones para
cualquier posicidn inicial del primer rotor.

Para que quede mas clara la diferencia con que haria una Bombe real transformada en
cddigo seria la de la Figura 62. Lo Unico automatizado que seria son los tres bucles de las
posiciones de los rotores, ya que como dijimos, si la Bombe no detectaba una parada, esta
incrementaba el una posicién el rotor rapido (y si a los otros dos rotores les tocaba,
también). Tanto la colocacion de los rotores, como colocar las Enigmas de la Bombe
simulando la posicidon adecuada en el texto lo hacian los operarios a mano.

EnigmaSet ConfigEnigma = {fast, middle, slow, reflector + '4', 'A', 'A', 'A', };
InitEnigmaMachine(ConfigEnigma) ;
for (int s=0; s<26) S++)
for (int m=0; m<26; m++)
for (int f=0; T<26; T++) {

Figura 62. Cédigo del cuerpo real de la Bombe

Una vez lista la Bombe para iterar con una posicién inicial para los rotores, inicializamos a 0
una matriz (wires) que simula el cableado explicado en el apartado “3.4 Puesta a punto de
la Bombe” Figura 55. Por lo tanto, serd una matriz con 26 vectores de 26 posiciones por
vector. Cada uno de los vectores hace referencia a un grupo de cables representado una
letra (A-Z), y cada una de las 26 posiciones hace referencia a uno de los 26 cables que tiene
cada grupo (a-z). El hecho de inicializar a 0 simula que ningun cable contiene voltaje en ese
momento.
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Después de esto, se pone a 1 el elemento de la matriz correspondiente a nuestra hipotesis
inicial, haciendo referencia que en ese cable, de ese grupo hay voltaje. Por ejemplo, si
nuestra hipdtesis inicial es que “E” esta conectada a “A” y viceversa, significa, como vimos,
que el cable “a” del grupo “E” tendra voltaje, y que el cable “e” del grupo “A” también
tendra. Si llamamos a “E” “hip” y a “A” “hip2”, quedaria como se ve en la Figura 63.

wires[hip - 'A'][hip2 - 'A'] = wires[hip2 - 'A'J[hip - 'A'] = '1';

Figura 63. Sentencia que simula inyeccidn de voltaje en la hipdtesis

A partir de tener un cable ya con voltaje, la Enigma/s que estd/n conectada/s a ese cable ya
puede producir salidas y por lo tanto, dejar con voltaje esos cables y por lo tanto, posibilitar
a otras Enigmas que saquen salidas y asi sucesivamente. Por lo tanto, cada vez que a un
cable le llegue voltaje por primera vez, lo encolaremos de la misma manera que hemos
hecho con la hipétesis inicial. Y cuando todas las Enigma de un cable hayan computado, se
desencola este cable (haciendo ver que ya se han descubierto salidas por ellos y por lo tanto,
ya no hace falta volver a computar con ellos).

Una vez no queden elementos en la cola, la Bombe pasara a ver cuantos cables hay con
voltaje para el grupo de nuestra hipodtesis inicial (letra “E” o lo que habiamos llamado en el
codigo: “hip”), Figura 64. Esto simula lo que hacia la Bombe mirando los cables con voltaje
gue habia en el registro. Recordemos que solo nos interesaba que hubiera 1 o 25.

count = 8;
for (int i=0; 1<26; i++)

if (wires[hip - 'A'][1] =
++count;

)

Figura 64. Cédigo que simula la deteccidon de voltaje en el registro

Si el numero de cables con voltaje es 1, lo Unico que el cdédigo va a hacer es una pasada por
todos los grupos de cables restantes viendo si hay solo 1 cable con voltaje por grupo o
ninguno, Figura 65. Es decir, tal y como vemos, si hay mas de un cable con voltaje significa
gue hay una contradiccion en ese grupo de cables, por lo que no nos sirve esa salida de la
Bombe.
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int contra = 6;

for (int i=0; i=26 && !contra; i++) {

count = 0;
for (int j=0; j<26; j++)
if (wires[i]l[j] = '1")
++count;

if (count = 1)
contra = 1;

Figura 65. Cddigo que comprueba que todos los grupos tienen como maximo 1 cable con voltaje

Si por el contrario, el nimero de cables con voltaje es 25, el cédigo hara una iteracion extra
de la Bombe inyectando voltaje en el cable que no lo tenia y luego, hard lo mismo que en la
Figura 60.

3.6.1 Formato de salida

Una vez el programa ha trabajado todas las posiciones posibles, nos va a volcar un output
como el de la Figura 66. El resultado son todas las posibles combinaciones de rotores,
reflector, posicidn inicial de los rotores y plugboard (por este orden) que son candidatos a
ser la configuracién inicial de la Enigma correcta. Son candidatos porque aun no han
generado contradiccién (esto dependerd, tal y como vimos en el apartado “3.2 Solucién
tedrica”, de la cantidad de letras distintas que podamos descubrir mediante nuestro texto.
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IIIIVE VYWD AU CD EX FZ HW IS KM LL PY QT RV

IV IIBTSABE CI DEF] GQ HN LM PU TX VV YZ

I V IIT B ADO BB CX EE GR HY IM JQ KL NN PZ SV UU
IT I III B LKD AU BX CS5 DT EW FZ GO IP QY RY

IT I IIT B SPG AP BB CI DH EV FU GO KK LM QZ SW

ITI I IV B GBI AX BG CD EP FZ IY KU LM RS TV

IT ITITI I B CSA AM BD CO EL FJ GH QZ RR SX VW YY

IT IV I B ZIQ AZ BY EY FU GT HS IR JQ KK LL NN 00
IT IV I B ZJQ AZ BY EV FU GT HS IR JOQ KK LL NN 00
IT v IITI B HKC AM BY CV DE FS GR HN JK LP TX

ITT IT I B PIG AH BB CD EW FK GI LL NX PS RR TZ WV
IIT II V B PSY AW BD CR ES FX GH J1] LL MM OV PQ YZ
IIT V IV B YYS AC BG DD EJ FX HM KT LQ NV PP RS

IV III II B XKF A0 BH C] DL EG FF MS PQ RZ VX WY
IV III II B DZN AX BD EE FH GG IT JN KP LO MW QU YZ
IV VIEB PPX AZ BQ CE FJ GU HI KL MO PY TX

V IV III B YLY AM BD EQ FJ GP HK LS NV RX TY
IIIV CTML AB DI EL FH GZ JT KQ MN PV UY

I IV ¥V C OHL AA BD EE FZ GS IX KU 00 PQ RR TY VW
IV ITI C EDO AA BM CD ES FV HX JY KT LOQ NR PP

IT I IV C GY0O AB CS DO EH FQ GG IP KU LW MV XZ

IIT I IV C HND AD EB EP FG HY JK LL M5 NN QT RR WX
ITIT I Vv C UDT AA BB CY DR E5 FG HX JO LZ MP QQ YY
IIT VI C QLU AX BW CR DO EJ FV GS HY LL MP QQ

IV II I C FPA AR BB CS DY EP FX HJ LO MM QW VZ

IV IIT II C EVR AH BO DS EL FF GM IP KK QU VW XZ
IV III II C FWR AH BO DS EL FF GM IP KK QU VW XZ
IV v IT C WQM AM BY DZ EE FF GR HW JX LQ 00 PY 55
V IIT I C SSE A0 BC DE FW GK HH IM LO PS UU VZ

V IITI IV C G5] AH BY C] DD EQ FX GM LP OW RR SY

V IV IIT C NWK AQ BT CF DM EP GL HH J5 KV NX RY

Figura 66. Resultado de todas las paradas de la Bombe sin contradicciones

3.6.2 Fichero encriptado y crib

El fichero encriptado con el que vamos a trabajar va a ser el resultado de haber pasado por
una maquina Enigma el fichero de texto que vimos en el apartado “2.3.1.1 Fichero a
encriptar/desencriptar”, es decir, el libro “Las Indias Negras” de Julio Verne.

Nuestro crib, va a ser “AUTHORJULIOVERNE”, ya que tal como mencionamos en ese mismo
apartado, todos los textos iban a tener dentro de sus 50 primeras letras la palabra

“AUTHOR” seguida del nombre y apellido del autor. Esto simula cémo empezaban los
alemanes los textos encriptados (con el parte meteorolégico).

3.6.3 Resultados de ejecucion

En la Tabla 14 podemos observar el tiempo total de la ejecucidn secuencial y el tiempo de la
parte que podemos paralelizar. Los tiempos son en el orden de segundos.
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Total Paralelizable

Bombe secuencial 6262.85 6262.61

Tabla 14. Tiempo de ejecucidn total y paralelizable de la Bombe

Por lo tanto, podemos observar que el 99.996% del tiempo del programa es paralelizable.

3.7 Codigo cuda

Una vez visto el cddigo secuencial, vemos que el cuerpo principal del cédigo tenia muchos
bucles, por lo tanto, podiamos paralelizarlo. En total, tenemos las siguientes iteraciones:

2x bucle reflector
5x bucle slow

5x bucle middle
5x bucle fast

50x bucle p

26x bucle s

26x bucle m

26x bucle f

Por lo tanto, 219,700,000 iteraciones en el peor caso. Recordemos que en el bucle p, se veia
si habia letras duplicadas, por lo que si existen estas, nos ahorraremos 26”3 iteraciones de

a N u
S

los bucles m”, y “f”. Si queremos que cada iteracidén la ejecute un thread de la GPU
vemos que hay iteraciones suficientes para ello, 30720 threads por device. Es por eso, que
he decidido dejar fuera de la paralelizacion el bucle del reflector y los tres bucles de los

rotores (seguimos teniendo como maximo 878,800 iteraciones por delante para computar.

3.7.1 Envio de informacion al device

En este cédigo, el device va a necesitar que se le envie la misma informacién que enviamos
en el cddigo cuda para la Enigma, puesto que la maquina Bombe, no es mas que diversas
Enigmas, Figura 67. Ademas, va a necesitar también el trozo de texto (“d_Dataln2”) que
suponemos que va a estar dentro del texto encriptado y un espacio para almacenar nuestra
hipétesis si la iteracion de la Bombe ha dado contradiccién o no (“d_output”).
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cudaMalloc((char **) &d Plug, 26);
cudaMalloc((char **) &d rFast, 26);
cudaMalloc((char **) &d rMiddle, 25);
cudaMalloc((char **) &d rSlow, 26);
cudaMalloc((char **) &d rVFast, 26);
cudaMalloc((char **) &d rVMiddle, 26);
cudaMalloc((char **) &d rvSlow, 26);
cudaMalloc((char **) &d Volta, 26);
cudaMalloc((char **) &d output, 26*26%26%50);
cudaMalloc((char **) &d Dataln, strlen(Dataln));
cudaMalloc((char **) &d DataInz, 180);

cudaMemcpy(d Plug, &Plug, 26, cudaMemcpyHostToDevice);

cudaMemcpy(d rFast, &rFast, 26, cudaMemcpyHostToDevice);

cudaMemcpy(d rMiddle, &rMiddle, 26, cudaMemcpyHostToDevice);
cudaMemcpy(d rSlow, &rSlow, 26, cudaMemcpyHostToDevice);

cudaMemcpy(d rVFast, &rVFast, 26, cudaMemcpyHostToDevice);
cudaMemcpy(d rvMiddle, &rvMiddle, 26, cudaMemcpyHostToDevice);
cudaMemcpy(d rvSlow, &rVSlow, 26, cudaMemcpyHostToDevice);
cudaMemcpy(d Volta, &Volta, 26, cudaMemcpyHostToDevice);

cudaMemcpy(d Dataln, DataIn, strlen(Dataln), cudaMemcpyHostToDevice);
cudaMemcpy(d DataIn2, Dataln2, 100, cudaMemcpyHostToDevice);

Figura 67. Asignacién de memoria en el device y transferencia de informacién entre GPU-CPU

3.7.2 Distribucidn del trabajo

He analizado 4 combinaciones de distribuciones de trabajo hasta toparme con una que
ralentizase mucho el tiempo de ejecucién respecto a las otras. Estas combinaciones son las
gue vamos a ver a continuacion (no van a tener una explicacién detallada, dado que es el
mismo procedimiento que hemos visto tanto en el apartado “2.5.3.2 Distribucion del
trabajo” como en “2.5.4.2 Distribucién del trabajo”.

Importante recordar que aqui el tamano del programa va a ser 2673*50 (878,800), tal y
como mencionamos al final del apartado “3.7 Cédigo cuda”, ya que dejabamos fuera el

bucle del reflector y los 3 bucles de los rotores. Por lo tanto, estas iteraciones deberan ser
multiplicadas por 2*263.

3.7.2.1 128 threads por bloque

Tenemos 6,866 bloques de 128 threads cada uno., 16 bloques por SM y por lo tanto, 240
bloques de 256 threads trabajando a la vez (30,720 threads).
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3.7.2.2 256 threads por bloque

Tenemos 3,433 bloques de 256 threads cada uno, 8 bloques por SM y por lo tanto, 120
bloques de 256 threads trabajando a la vez (30,720 threads).

3.7.2.3 512 threads por bloque

Tenemos 1,717 bloques de 512 threads cada uno, 4 blogues por SM y por lo tanto, 60
bloques de 512 threads trabajando a la vez (30,720 threads).

3.7.2.4 1024 threads por bloque

Tenemos 859 bloques de 1024 threads cada uno, 2 blogues por SM y por lo tanto, 30
bloques de 1024 threads trabajando a la vez (30,720 threads).

3.7.3 Kernel

Cada thread debe saber cudl es la iteracion de la Bombe que tiene que ejecutar. Esto lo
podemos ver en la Figura 68. Lo primero es ver si nuestro thread estd dentro del nimero de
iteraciones que mandamos a paralelizar (como vimos, 878,800).

int pos = blockIdx.x * blockDim.x + threadIdx.x;

if (pos < 17576%*50) {

]

= pos % 26;

(pos / 26) % 26;

(pos / (26*26)) % 26;
(pos / (26*%26*26)) % 50;

£
m
5
p

Figura 68. Cddigo de la posicidn a ejecutar por el thread

Si el thread tiene asignada una posicidn correcta dentro de la ejecucién del device, hemos de
mirar cual es la iteracion de la Bombe que le corresponde. Por ejemplo, cogemos la
distribucién de trabajo de 128 threads por bloque y tenemos el thread 73 del bloque 20. Pos
seria 20 * 128 + 73 (posicion 2,633). Por lo tanto, estariamos mirando la iteracién de la
Bombe con:

7



- Rotor rapido en la posicién 7 (letra “H”)

- Rotor del medio en la posicién 23 (letra “X”)
- Rotor lento en la posicion 3 (letra “D”)

- Posicion 0 del texto encriptado

Una vez el thread sabe con qué iteracion de la Bombe tiene que trabajar, este ejecutard el
mismo cédigo que se describié en el apartado “3.6 Codigo secuencial”. Si su iteracién no ha
llegado a ninguna contradiccidn, este guardara en el espacio que le mandamos al device la
hipdtesis para la que no se ha cumplido ninguna contradiccién. Si por el contrario, si ha
ocurrido contradicciones, pondremos en esa posicion un “[“ (podria ser cualquier caracter <
“N” o> “7").

Fuera del kernel, el programa revisara este espacio de direcciones y para cada una de sus
posiciones, vera si el elemento pertenece a “A”-"Z” o distinto, Figura 69. Si lo es, lo ignorara.
Por el contrario, ejecutara una iteracidon de la Bombe con esa hipdtesis e imprimira el
resultado.

for (int p=0; p<50; p++)
for (int s=0; s<26; s++)
for (int m=0; m<26; m++)
for (int f=0; f<26; f++)
if (output[p*26*26*26+5*26*26+m*26+T] >=

&% output[p*26*26*26+5*26%26+m*264F] <= 'Z")

Figura 69. Cédigo que valida si ha habido contradiccién o no

3.7.3.1 Resultados de ejecucion

El tiempo de ejecucidn para la maquina Bombe y para las distintas distribuciones de trabajo,
asi como para la ejecucion secuencial se muestra en la Tabla 15. Los tiempos son en el orden
de segundos.

Secuencial | 128 th/bl | 256 th/bl | 512 th/bl | 1024 th/bl
Bombe | Cuda Total 6262.61 254.74 255.43 256.61 359.58
Kernel | No aplica |254.71 255.40 256.58 359.55

Tabla 15. Tiempo de cuda total y del kernel para cada distribucion

Como vemos, conseguimos los siguientes speedup, Tabla 16, respecto al cédigo secuencial.
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128 th/bl 256 th/bl | 512 th/bl | 1024 th/bl

Bombe Cuda Speedup 24.58 24.52 24.41 17.42
(Total)

Tabla 16. Speedup de cuda total respecto al cddigo secuencial

Como siempre, hemos de analizar el comportamiento del cddigo en cuda para ver si estos
resultados son buenos o pueden obtenerse de mejores. Si nos basamos en los tres objetivos
gue marcamos para toda ejecucidn en cuda del apartado “2.5.2 Objetivos de una ejecucion
en cuda”, solo conseguimos el primero, una buena distribucion de los threads (excepto para
la distribuciéon de 1024 threads por bloque), haciendo que todos los del device tengan
trabajo que hacer.

El problema principal de este cddigo es que como se ha querido hacer lo mas real a como
funcionaba la maquina Bombe, no es un programa pensado para ejecutarse en cuda. Vemos
que hay mejora respecto al cddigo secuencial (para nada la que se suelen conseguir con
buenos programas en cuda) pero es simplemente porque tienes a miles de threads
ejecutando un cédigo a diferencia de solo uno en la ejecucidn en secuencial. Esto se ve en
gue hay una gran divergencia en el camino de los threads, ya que el programador no sabe
cuanto trabajo va a hacer cada uno, ya que se trata de conseguir contradicciones que
pueden ser en la iteracién 1, en la 2, en la 20, ...

Por lo tanto, si hay divergencia de threads, los accesos a memoria tampoco van a ser
6ptimos ya que van a ser en desorden. Es decir, no vamos a poder ocultar la latencia a
memoria, cosa que vimos anteriormente que nos daba muy buen rendimiento en los
programas.

En la Figura 70 se muestra la salida del profiling de nvidia para ver como son los accesos a
memoria. Se ha hecho la ejecucién de solo 1 posicidon de rotores, ya que es indiferente,
puesto que todo el programa se comporta de la misma forma.

Invocations Metric Name Metric Description Min Max Avg

Device "Tesla K40c (0)"
Kernel: kernel(char, char, char, char*, char*, int, char*, char*, char*, char*, char*, char*, char*, char*, char*)

1 gld_efficiency Global Memory Load Efficiency 5.39% 5.39% 5.39%
1 gld requested throughput Requested Global Load Throughput 2.0959GB/s 2.0959GB/s 2.0959GB/s
1 gld_throughput Global Load Throughput 38.858GB/s 38.858GB/s 38.858GB/s
1 gld_transactions_per_request Global Load Transactions Per Request 1. 1 1.

1 gld_transactions Global Load Transactions 2775939324 2775939324 2775939324
1 gst_efficiency Global Memory Store Efficiency 68.32% 68.32% 68.32%
1 gst_requested throughput Requested Global Store Throughput 266.04KB/s 266.04KB/s 266.04KB/s
1 gst_throughput Global Store Throughput 389.42KB/s 389.42KB/s 389.42KB/s
1 gst transactions per request Global Store Transactions Per Request 15 T, I

1 gst_transactions Global Store Transactions 26531 26531 26531

Figura 70. Nvprof con métricas de memoria para ejecucién 128 th/bl
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Como vemos, la eficiencia de las lecturas es muy baja, 5.39%. Sin embargo, vemos que se
ejecuta una transaccién de lectura por peticidn y esto es lo que siempre queremos obtener.
Si hacemos unos cdlculos (sabiendo que el kernel para solo esta posicidon de rotores tarda
2.122 segundos) tenemos que se piden 1,72 bytes por peticidon. Si rescatamos que se
gestiona una transaccidon por peticion, queda demostrado que hay divergencia en los
threads y que no se accede a memoria paralelamente.

A partir de ahora ignoraremos la ejecucion con la distribucion de 1024 threads/bloque
debido a que vemos que es a partir de aqui en que el rendimiento cae.

3.7.4 Kernel con shared memory

Una cosa que tenemos clara y segura es que cada thread va a tener que trabajar con los dos
textos que le hemos pasado al device: nuestro crib y la parte del texto encriptado. Por lo
tanto, sabemos que por lo menos, en este aspecto nos vamos a beneficiar si utilizamos
shared memory.

Ademas, vamos a beneficiarnos de traernos a la shared memory los vectores de los rotores y
el reflector, tal y como hicimos en el apartado “2.5.3.4 Kernel con shared memory” del
calculo de la matriz Encriptador.

Para ello, vamos a inicializar nuevos vectores, Figura 71, indicando que van a formar parte
de la shared memory.

__shared  char sDatalIn[l8@];
__shared  char sDataInz[1lea];
__shared  char sPlug[2&];
__shared  char srFast[26];
__shared char srMiddle[26];
__shared  char srSlow[26];
__shared  char srVFast[26];
__shared  char srvMiddle[26];
__shared  char srvSlow[26];
__shared  char sVolta[26];

Figura 71. Inicializacién de la shared memory

Para cargar los dos textos, vamos a utilizar los primeros 100 threads de cada bloque y para la
resta de vectores, los 26 primeros, Figura 72. Por ultimo, se sincronizan los threads del
bloque para que ninguno empiece su ejecucion sin tener los vectores de la shared memory
completamente cargados.
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if (threadIdx.x <

100) {

sDataln[threadIdx.x] = DataIn[threadIdx.x];
sDataIn2[threadIdx.x] = DataIn2[threadIdx.x];

}

if (threadIdx.x < 26

sPlug[threadIdx.x] = Plug[threadIdx.x];
srFast[threadIdx.x]
srMiddle[threadIdx.x
srSlow[threadIdx.x]

) {

= rFast[threadIdx.x];
1 = rMiddle[threadIdx.x];
= rslow[threadIdx.x];

srVFast[threadIdx.x] = rVFast[threadIdx.x];
sryMiddle[threadIdx.x] = rVMiddle[threadIdx.x];
srVSlow[threadIdx.x] = rvSlow[threadIdx.x];

sVolta[threadIdx.x] = Volta[threadIdx.x];

}

__syncthreads();

Figura 72. Escrituras en la shared memory dependiendo del id del thread

3.7.4.1 Resultados de ejecucion

En la Tabla 17 vamos a ver un resumen de como quedan los nuevos tiempos de ejecucién,

en segundos, para cada distribucion de trabajo. Como estoy mostrando en segundos, la

parte restante del cddigo que se ejecuta en la CPU no la muestro, ya que es del orden de

muy pocos milisegundos y no muestra relevancia en el resultado de los tiempos.

Secuencial | 128 th/bl | 128 th/bl | 256 th/bl 512 th/bl
(no (shared) (shared) (shared)
shared)
Bombe | Cuda Total 6 262.61 254.74 176.89 178.01 177.44
Kernel | No aplica 254.71 176.86 177.97 177.41

Tabla 17. Tiempo de cuda total y del kernel para cada distribucion con shared memory

Por lo que los speedup de la distribuciéon de 128 threads/bloque con shared memory
respecto a la ejecucion secuencial a la mejor distribucidn sin shared memory (128 threads

por bloque) van a quedar como se muestra en la Tabla 18.

Secuencial

128 th/bl (no shared)
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Bombe Cuda (total) Speedup 35.40 1.44

Tabla 18. Speedup de cuda total respecto al cddigo secuencial y a la mejor distribucidn sin shared memory

Si para la ejecucidn sin shared memory vimos que la eficiencia de las lecturas eran muy baja,
la eficiencia en la shared memory lo va a ser mas. Esto es, porque seguimos con la misma
divergencia de los threads, por lo tanto, seguiremos no accediendo paralelamente a la
shared (lectura de 1 byte) y esta, como ya vimos en el apartado “2.5.3.4.1 Resultados de
ejecucion”, nos va a entregar 256 bytes por transaccién. Vedmoslo igualmente en la Figura
73.

Invocations Metric Name Metric Description Min Max Avg
Device "Tesla K40c (8)"
Kernel: kernelShared(char, char, char, char*, char*, int, char*, char*, char*, char*, char*, char*, char*, char*, char*)

1 shared_efficiency Shared Memory Efficiency 2.29% 2.29% 2.29%
1 shared_load_throughput Shared Memory Load Throughput 450.43GB/s 450.43GB/s 450.43GB/s
1 shared load transactions Shared Load Transactions 2776197247 2776197247 2776197247
1 shared load transactions_per request Shared Memory Load Transactions Per Request 1.000093 1.000093 1.000093
1 shared store_throughput Shared Memory Store Throughput 18.252MB/s 18.252MB/s 18.252MB/s
1 shared store transactions Shared Store Transactions 109860 169860 109860
1 shared store_ transactions_per_request Shared Memory Store Transactions Per Request 1.000036 1.000036 1.000036

Figura 73. Nvprof con métricas de shared memory para la ejecucion de 128 th/bl

Como dijimos, si que aprovechamos la shared memory, pero no obtenemos tan buenos
resultados en comparacién a si los accesos a memoria fueran éptimos desde un principio.
Estos tipos de cddigo no se pueden analizar previamente al 100%, ya que como dijimos, al
haber divergencia en los threads, no puedes saber el comportamiento de estos, y esto, en la
mayoria de casos es penalizante en cuanto a rendimiento.

3.7.5 MultiGPU + shared memory

Como siempre, miremos primero si el trabajo que hay total (threads trabajando a la vez en el
device) nos llega por lo menos para que cargar una GPU al 100%. Si revisamos el apartado
“3.7.2 Distribucion del trabajo”, todas las distribuciones tienen los 30,720 threads
trabajando y les sobran bloques para la otra GPU.

3.7.5.1 Envio de informacion a los devices

Como ya hemos visto anteriormente, lo primero va a ser asignar memoria no paginada en el
host, Figura 74.
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cudaMallocHost((char**)&Plug, 26);

cudaMallocHost( (char**)&rFast, 26):

cudaMallocHost( (char**)&rMiddle, 26):
cudaMallocHost( (char**)&rSlow, 26);

cudaMallocHost( (char*¥*)&rVFast, 26):
cudaMallocHost( (char**)&rVMiddle, 26):
cudaMallocHost( (char**)&rVSlow, 26):
cudaMallocHost( (char**)&Volta, 26);
cudaMallocHost((char**)&output, 26*26%26%*50);
cudaMallocHost((char**)&DataIn, strlen(DataInAux)):
cudaMallocHost((char**)&DataIn2, strlen(DataInzAux)):

Figura 74. Asignacidn no paginada de memoria, pinned memory

Y por ultimo, hacer las transferencias entre GPU-CPU asincronas, Figura 75. Recordemos que

estas transferencias se haran dos veces, una por GPU.

cudaMemcpyAsync(&d Plug[@], &Plug[@], 26, cudaMemcpyHostToDevice);

cudaMemcpyAsync(&d rFast[@], &rFast[e], 26,

cudaMemcpyHostToDevice);

cudaMemcpyAsync(&d rMiddle[©], &rMiddle[©], 26, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d rSlow[@], &rSlew[@], 26, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d rVFast[©], &rVFast[@], 26, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d rVMiddle[8], &rVMiddle[@], 26, cudaMemcpyHostToDevice);

cudaMemcpyAsync(&d rvSlow[@], &r¥Slow[8], 26,

cudaMemcpyHostToDevice) ;

cudaMemcpyAsync(&d Volta[e], &Volta[e], 26, cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d DataIn[0], &DataIn[©], strlen(DataIn), cudaMemcpyHostToDevice);
cudaMemcpyAsync(&d DataIn2[©], &DataIn2[©], 100, cudaMemcpyHostToDevice);

Figura 75. Transferencia asincronas de datos entre GPU-CPU

3.7.5.2 Resultados de ejecucién

Los resultados de la ejecucién de la Bombe para las diferentes distribuciones se observa en

la Tabla 19. Los tiempos estan en el orden de segundos.

Secuencial | 128 th/bl | 128 th/bl | 256 th/bl [ 512 th/b
(shared) (2 GPUs) (2 GPUs) (2 GPUs)
Bombe | Cuda (total) 6 262.61 176.89 74.56 75.01 74.82

Tabla 19. Tiempo de cuda total para cada distribucién con 2 GPUs

Por lo tanto, el speedup que obtenemos respecto a la ejecucidon secuencial a la mejor

distribucién con shared memory para 128 threads por bloque con 2 GPUs es la que se

muestra en la Tabla 20.
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Secuencial 128 th/bl (shared)

Bombe Cuda (total) Speedup 83.99 2.37

Tabla 20. Speedup de cuda total respecto al codigo secuencial y a la mejor distribucion con shared memory

Como vemos, superamos el 2x de speedup al usar el doble de GPUs. Esto es por lo mismo
gue ya hemos visto anteriormente, nos beneficiamos tanto de la pinned memory, que es una
asignacion de memoria mas rapida y de las transmisiones de informacién asincronas.

3.8 Resultado de ejecucidn final

Si hacemos una tabla resumen con la progresion que ha ido adquiriendo el cédigo secuencial
a lo largo de los distintos apartados, obtenemos lo que podemos ver en la Tabla 21. Tiempos
en el orden de segundos.

Secuencial 2 GPUs
Bombe Cuda (Total) 6 262.61 74.56
Total 6 262.85 74.80

Tabla 21. Comparacién de tiempos de cuda total y total entre cddigo secuencial y 2 GPUs

Por lo que el speedup final del cédigo con dos GPUs respecto a la ejecucion en secuencial es
de 83.72.

4. Maquina check

Que la Bombe haya parado y por lo tanto, el operario haya apuntado el resultado no significa
gue este resultado sea el definitivo. Como dijimos, es un plugboard que no ha obtenido
contradicciones para las letras descubiertas, pero si nuestro crib no es lo suficientemente
complejo, en cuanto a numero de letras que cubre, puede que este plugboard no sea
correcto.
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4.1 Combinaciones restantes

Recordemos que para crackear la maquina Enigma, antes de ejecutar las iteraciones con la
maquina Bombe, la Enigma tenia un total de 150,738,274,937,250 combinaciones posibles
en su configuracidn inicial, tal y como vimos en el apartado “3.1 Complejidad de la Enigma”.

4.1.1 Completar el plugboard

En el cédigo de la Bombe limitamos las salidas a que sean solo generadas las que generen
como minimo 8 parejas de plugboard distintas (con distintas me refiero a una pareja de dos
letras distintas). Por lo tanto, las combinaciones restantes para cada salida de la Bombe
estaran determinadas por este nimero de parejas distintas. Cuantas mas haya descubierto,
menos iteraciones habrd que ejecutar.

En la Figura 76 muestro las tres primeras lineas de la Figura 66 del apartado “3.6.1 Formato
de salida”, para que sea mas facil llevar la explicacién. Si nos damos cuenta, en el primer
output se han descubierto 11 parejas de plugboard en total, de las cuales, 10 de ellas son
parejas distintas. Al ser 10 el maximo de parejas distintas que puede tener un plugboard,
solo hay una combinacién posible, y es precisamente la ya generada. Recordemos que poner
una pareja de mismas letras es como no poner nada, ya que no se hace ninguna conexién en
el plugboard.

I IT IV B YWD AU CD EX FZ HW I5 KM LL PY QT RV
I V IT B TSA BB CI DE FJ GOQ HN LM PU TX VYV YZ
I VvV IIT B ADD BB CX EE GR HY IM JQ KL NN PZ SV UU

Figura 76. Output reducido de la Bombe

En el segundo output se han generado 11 parejas, de las cuales 9 son distintas. Por lo tanto,
guedard como maximo una pareja de letras distintas con 6 letras que aun estan libres (A, K,
O, R, S y W). Esto significa 6 combinaciones de mismas letras (AA, KK, OO ...) y 15
combinaciones de letras distintas (AK, AO, AR ...). Este ultimo niumero sale de que tenemos
qgue combinar 6 letras (6!). Como queremos hacer solo 1 pareja de dos, nos sobran
combinaciones de 4 letras (6-2), dividimos por 4! Como el orden de esta pareja nos es
indiferente, dividimos por 1! Por ultimo, AB es lo mismo que BA, por lo que dividimos por
271 (dos elevado al nimero de parejas que queremos hacer). Por lo tanto: 6! / 4!2. Si lo
sumamos a las 6 combinaciones y a la que ya hay, para este output de la Bombe hay que
comprobar 22 combinaciones totales.
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Para el tercer output, se han generado 12 parejas de plugboard, de las cuales 8 son distintas.
Por lo tanto, quedardn dos parejas distintas como mdaximo con las 6 letras que aun estdn
libres (A, D, O, T, Uy W). Por lo tanto, en este caso hay tres opciones de plugboard:
- El plugboard que sale directamente del output de la Bombe.
- El plugboard de 9 parejas distintas (hemos de generar una pareja mas), por lo tanto
las mismas combinacion que en el caso anterior (segundo output).
- El plugboard de 10 parejas distintas (hemos de generar dos parejas mas), por lo tanto
el calculo sera: 6! / 2121272, es decir, 45 combinaciones
Por lo tanto, para este tercer output tenemos 1 + 21 + 45 combinaciones totales (67).

Si por ejemplo, nos saliese un output con 11 parejas de letras distintas, esto no es posible, ya
qgue el maximo son 10. Por lo tanto, este ni se comprueba y se descarta.

4.1.2 Posicion inicial de los rotores

Recordemos que la posicién de los rotores que anotaba el encargado solo era la posible
candidata a ser cierta si la primera posiciéon de nuestro crib coincidia con la primera posicion
del texto encriptado. Si no era asi, se debia de tirar atras tantas posiciones como la primera
posicidn de nuestro crib respecto a la del texto encriptado.

Si rescatamos el crib que teniamos en la Figura 54 del apartado “3.4 Puesta a punto de la
Bombe”, vemos que el crib coincide con la primera posicién del texto encriptado, puesto que
si por ejemplo, la Bombe ha parado en la posicién de los rotores “JRS”, es con esta posicidon
inicial con la que hay que trabajar.

Sin embargo, si rescatamos el crib de la Figura 52 del apartado “3.2 Solucidén teérica”, vimos
gue hicimos desplazamientos, por lo que la posicién “QFS” habra que desplazarla las mismas
posiciones hacia atrds. Esto no puede parecer un gran problema a simple vista, pero si
recordamos que existen ocasiones en que el rotor de el medio puede hacer doble giro, se
nos abren mas caminos de posibilidades para llegar a una posicién en concreto.

Si analizamos la posicion “QFS”, podemos suponer que la posicion anterior es “QFR”, solo ha
girado el rotor rapido una posicion, como hace siempre. Sin embargo, si estamos en la
posicidon “PER”, y el rotor de el medio es el ll, la “E” es la muesca de este, por lo tanto, habra
doble giro de rotor: “QFS”. Al estar el rotor del medio en su muesca, giran tanto él como el
rotor lento.

86



4.2 Maquina check historica

Se trataba de una maquina parecida a una mdaquina Enigma con la diferencia de que no tenia
el mecanismo de giro de los rotores, sino que era manual. Esto servia para ir cambiando los
giros de estos de forma mas facil.

Al operario encargado de esta maquina se le dejaba lo que habia generado la Bombe. Este,
tenia que ir desencriptando el mensaje y cuando llegaba a conjuntos de letras que no tenian
sentido, debia hacer un cambio en el plugboard (apartado “4.1.1 Completar el plugboard”)
y/o un cambio en las posiciones iniciales de los rotores (apartado 4.1.2 Posicidn de los
rotores”).

Podria darse la ocasién de que cambiase lo que cambiase no se llegaba a entender nada, por
lo tanto ese output de la Bombe lo descartaban.

4.3 Nuestra maquina check

Como nuestra maquina Bombe si tiene en cuenta el recorrido de los rotores hacia atras,
nuestra maquina check solo va a tener que comprobar las combinaciones restantes del
plugboard (la posicién inicial siempre sera correcta). Para comprobar estas combinaciones,
pensamos en dos formas distintas: una que se acercaba a lo que hacian los ingleses, y la
segunda una mas automatica.

Los ingleses, como he comentado, trataban de ir mirando si se iba entendiendo el texto que
iban desencriptando o no. Como nuestros textos son en castellano, decidimos simular esto
contabilizando el numero de “QUE” que se generaban en el texto desencriptado. Si llegaba a
un porcentaje minimo respecto a las letras totales, ddbamos por posiblemente buena esa
combinacion, y pasaria a la siguiente fase. Esta fase seria poner esta combinacién en una
magquina Enigma y lo generado, hacer un comando “diff” con el texto original.

Este porcentaje minimo que he mencionado es del 0.7%. Se hicieron pruebas con 31 libros
de distintas longitudes que siguieran el mismo formato de este proyecto y salié que el
minimo de “QUE” en uno de los libros era del 0.73%.

El hecho de que nos basaramos en la palabra “QUE” viene dada a que mediante un

histograma de varios textos largos, vimos que era la combinacidn de tres letras que mas
aparecia en castellano, alejdndose bastante de la segunda, “ENT”.

87



La segunda forma que se nos ocurrio, era para cada combinacién generar un desencriptado
y compararlo con un comando “diff’ con el texto original. Esto nos daria automaticamente si
la combinacién es valida o no. Sin embargo, dejamos de simular el hecho de que tenian que
ir entendiendo el texto que iban desencriptando.

4.4 Codigo secuencial

Nuestro programa partira de leer el output que la Bombe ha generado y ha escrito en un
fichero de tipo texto. Por ejemplo, si nos fijamos en el trozo de output que hay en la Figura
76 del apartado “4.1.1 Completar el plugboard”, veremos que de la primera linea va a
aprovechar todo excepto el nUmero que esta entre la posicién inicial de los rotores y la
primera pareja del plugboard, ya que este nimero es indiferente para este cddigo.

La base principal de este cddigo es saber cuanto es el nUmero de parejas de distintas letras
que le queda al plugboard del output, ya que cuantas menos parejas le queden menos
iterara. Por lo tanto, cada vez que leamos de la linea del output una pareja de distintas letras
incrementaremos un contador que al final, lo acabaremos restando de 10 (maximo de
parejas).

Otro dato importante que necesitamos es qué letras son las que estan libres. Esto lo
haremos mediante un vector que hemos llamado “libres” el cual, tiene 26 elementos. Este
vector se encarga de dejar a O el elemento cuya posicidn sea igual a la letra que estd en una
pareja del plugboard (esto se hace dos veces por pareja, ya que son letras distintas) y solo
una vez para parejas de letras iguales. Un pequefio ejemplo esta mostrado en la Figura 77,
donde primero vemos que hacemos el conexionado de la pareja con la funcion “Clavar”,
marcamos estas dos letras como “ya no son libres” y aumentamos conforme es una pareja
cogida.

Clavar(strfe], str[1]);
libres[str[@] - 'A'] = libres[str[1] - 'A'] = 0;
if (str[0] != str[1]) {

++parejasCogidas;

}

Figura 77. Cddigo para calcular el nimero de parejas del plugboard

A partir de aqui, nos falta generar todo el nimero posible de combinaciones de parejas de
letras distintas que nos quedan, de como maximo 10. Como dijimos, en la Bombe hicimos
gue solo mostrara outputs que tenian como minimo 8 parejas de letras distintas. El cuerpo
de los bucles para las combinaciones se muestra en la Figura 778.
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if (parejasRestantes > ©) {

for (int i=0; i<letrasLibres; i++) {
for (int j=0; j<letrasLibres; j++) {
if (i != j && actually_checked[i][j] == © && actually_checked[j][1] == @) {

actually_checked[i][j] = actually_checked[j][i] = 1;
//cédige de una pareja aqui

if (parejasRestantes > 1) {
for (int k=0; k<letrasLibres:; k++) {
if (k 1= 1 8& k 1= §) {
for (int 1=0; l<letrasLibres; 1++) {

if (1L !=1 &% 1 != j && 1 != k && actually checked2[1][j]1[k]I[1l] == © && actually checked2[1][j][1]1[k]
== (0 && actually checked2[j][1]1[k][1l] == © && actually checked2[j][1][1][k] == © && actually checked2[k][1]I[1][]] ==
&& actually_checked2[k][1][j][1] == © && actually checked2[1][k][1][]j] == © && actually checked2[1][k][j][1] == @) {

actually checked2[1][j]1[k][1] = actually checked2[1][j]1[1][k] = actually checked2[j][1][k][1] =
actually checked2[j][1][1][k] = actually checked2[k][1][1][j] = actually checked2[k][1][j]1[1] = actually checked2[1][k]-
[1]1[J] = actually checked2[1]1[k][j1[1] = 1;

//codigo de dos parejas aqui

Figura 78. Bucle del cddigo para generar las combinaciones restantes

La matriz “actually_checked” graba las combinaciones de una pareja que ya se han generado
para no volver a generarlas, y la matriz “actually_checked2” graba las combinaciones de dos
parejas. Si nos volvemos a fijar en la Figura X, podemos ver que para cada combinacion de
una pareja, la probamos y generamos las combinaciones restantes de dos parejas con esta 'y
las probamos.

Fuera de esta sentencia “if (parejasRestantes > 0)” tendremos que probar una combinacién
extra que es la que se genera en el output, es decir, sin crear ningln conexionado mas en el
plugboard. Siempre y cuando, “parejasRestantes” sea igual a 0, ya que 10 es el maximo que
pueden haber. Recordemos que “parejasRestantes” lo obteniamos de restar 10 a
“parejasCogidas”.

Para cada combinacién generada, se operard como una Enigma, es decir, con las mismas
matrices Encriptador, Camino y Ruta que vimos en el apartado “2.4 Cddigo optimizado”. Se
guardard la desencriptacion del texto encriptado en un espacio, “DataOut’ vy
contabilizaremos el nimero de “QUE” que se han generado, tal y como comentamos en el
apartado anterior “4.3 Nuestra maquina check”, Figura 79.

for (int i=0; i<strlen(Datagut)-2; i++)
if (DataOut[i] == 'Q' && DataOut[i+l1l] == 'U' && DataOut[i+2] == 'E')
++countPalabra;

Figura 79. Cddigo que contabiliza en nimero de aparicion de “QUE”

Por ultimo, solo quedara ver si el nUmero de veces que aparece la palabra “QUE” pertenece
al 0.7% del total de extensidn del archivo desencriptado, Figura 80.
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double histo = countPalabra * 106.8 f strlen(Dataln);
if (histo >= 0.7) {

//impresidn del resultado

Figura 80. Cédigo que mira si se llega al limite de “QUE”

4.4.1 Formato de salida

El output de nuestra maquina check nos mostrard un listado de las combinaciones que han
dado un porcentaje mayor o igual al 0.7 contando el nimero de “QUE” que generan al
desencriptar el mensaje. Para el ejemplo de la Figura 66 del apartado “3.6.1 Formato de
salida”, el resultado lo vemos en la Figura 81.

IT IV I B ZI0 AZ BY CX EV FU GT H5 IR 19
IT IV I B Z2I0 AZ BY CX DW EV FU GT H5 IR 1Q
IT Iv I B ZIQ AZ BY DW EV FU GT HS IR 1Q
IT IV I B 210 AZ BY CX EV FU GT HS IR J1Q
IT IV I B 230 AZ BY CX DW EV FU GT HS IR 10
IT IV I B 210 AZ BY DW EV FU GT HS IR 1@

Figura 81. Output de la maquina Check

4.4.2 Resultados de ejecucion

Para los resultados que vamos a ver a continuacion, hemos escogido como output de la
Bombe el mismo que se ve en la Figura 66 del apartado “3.6.1 Formato de salida”. Como en
este cdédigo utilizamos la misma funcionalidad de la Enigma que vimos en el apartado “2.4
Cddigo optimizado”, sabemos que vamos a poder paralelizar el guardado en la matriz
Encriptador y el acceso a Encriptador, Tabla 22. El tiempo es del orden de segundos.

Total Encriptador Acceso a Encriptador

Check 671.60 9.37 662.09

Tabla 22. Tiempo de ejecucidn del check secuencial

Viendo estos resultados, observamos que un 99.98% del tiempo de ejecucion pertenece a
partes que pueden ser paralelizadas, por lo tanto, este cddigo es altamente paralelizable.
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Ademas, sabemos como se van a comportar las dos partes al paralelizarlas, ya que las vimos
anteriormente.

Sabiendo que el acceso a Encriptador es altamente paralelizable y que es un 98.60% de la
ejecuciéon paralela, podemos predecir que este cddigo va a obtener un alto speedup en
cuanto lo paralelizemos.

4.5 Cédigo cuda

Para transformar nuestro cédigo secuencial en paralelizable mediante cuda, es lo mismo que
ya vimos en el apartado “2.5 Cédigo cuda”, por lo que no explicaremos en detalle cdmo se
ha realizado, asi como las diferentes distribuciones de trabajo que pueden verse en ese
mismo apartado.

Sin embargo, si que crearemos dos programas distintos: uno con shared memory y otro con
2 GPUs + shared memory, tal y como vimos.

4.5.1 Kernel con shared memory

4.5.1.1 Resultados de ejecucidn

En la Tabla 22 podemos observar los tiempos de ejecucién del programa paralelizado , es
decir, matriz Encriptador y el acceso a esta paralelizados en cuda. Para la ejecucion de la
matriz Encriptador, se utiliza la distribucion de 512 threads por bloque, ya que fue la
mejores resultados nos dio. Para el acceso a dicha matriz, utilizaremos la distribucion de 128
threads por bloque por la misma razén. Muestra de 50 ejecuciones y tiempos en segundos.

Secuencial Secuencial Paralelizado | Paralelizado
Encriptador | Acceso Encriptador | Acceso
Check Media Cuda |9.37 662.09 0.362 0.342

En la Tabla 24 podemos observar el speedup que se obtiene respecto a la ejecucion en

Tabla 23. Tiempo de ejecucion del check secuencial y del check shared memory en cuda

secuencial del calculo de la matriz Encriptador, del acceso a esta y del total de ambos.
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Encriptador | Acceso Total

Check Media Speedup 25.88 1935.93 953.78

cuda

Tabla 24. Speedup del check con shared memory respecto al secuencial

4.5.2 MultiGPU + shared memory

Anteriormente vimos que si podiamos utilizar dos GPUs para la ejecucion de este cddigo, ya
gue tanto en el calculo de la matriz Encriptador como en su acceso, por lo menos una de las
GPUs utilizaba todos sus threads.

4.5.2.1 Resultados de ejecucion

En la Tabla 25, podemos observar los tiempos de ejecucién del programa paralelizado
ejecutandolo con dos GPUs. Para el cdlculo de la matriz Encriptador se utiliza la distribucidn
de 128 th/bl, y para el acceso a ella la misma. Lo comparamos con los tiempos obtenidos
anteriormente de la versién solo con shared memory. Muestra de 50 ejecuciones y tiempo
en segundos.

Paralelizado | Paralelizado | 2 GPUs 2 GPUs
Encriptador | Acceso Encriptador | Acceso
Check Media Cuda |0.362 0.342 0.072 0.073

Tabla 25. Tiempo de ejecucion del check shared memory y del check 2 GPUs en cuda

Por lo que obtenemos, Tabla 26, los siguientes speedup totales de la parte de cuda para
nuestra ejecucion de 2 GPUs respecto al secuencial y a la versién solo con shared memory.

Secuencial Paralelizado

Check Media 4630.76 4.85

Speedup cuda

Tabla 26. Speedup total de cuda por parte de 2 GPUs respecto al cddigo secuencial y paralelizado

En esta tabla podemos ver el alto rendimiento que se consigue al asignar memoria no
paginada y realizar transmisiones de datos de forma asincrona. Visto friamente,

practicamente es como si estuviéramos ejecutando el cédigo con 5 GPUs.
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4.6 Resultado de ejecucion final

En el apartado “4.4.2 Resultados de ejecucion”, vimos que la parte que no se podia
paralelizar era de un 0.02% del total del tiempo de ejecucién del cddigo. Esto son 0.14
segundos, que se compartiran con ambas versiones que hemos creado del cédigo en cuda.
Por lo tanto, si sumamos dicho tiempo a cada ejecucion obtendremos la tabla resumen
siguiente, Tabla 27.

Secuencial Shared Memory | 2 GPUs

Check Total 671.60 0.844 0.285

Tabla 27. Comparacién de tiempos finales de las dos versiones del check en cuda respecto a la secuencial

5. Bombe + check con fuerza bruta

Después de ver lo que tardamos en sacar los posibles plugboards validos con la Bombe y
luego probarlos en la maquina check para ver si llegan a un nimero determinado de “QUE”,
nos preguntamos cudnto tardariamos en sacar el mismo resultado si hiciéramos una
ejecucion mediante fuerza bruta. Es decir, lo que para en la época de la Segunda Guerra
mundial era imposible y por eso, idearon el método de hipdtesis y contradicciones, cdmo se
comportaria hoy en dia.

De hecho, ya hemos visto un programa de fuerza bruta, el de la maquina check. Pasados
unos rotores con una posicién determinada, un reflector y un plugboard incompleto,
probaba todas las combinaciones de plugboard estantes y mirdabamos si se llegaba al 0.7%
de “QUE” respecto al nimero de letras totales del texto desencriptado.

El cédigo de fuerza bruta haria lo mismo pero con todas las combinaciones de rotores,
posiciones de estos, posiciones iniciales, rotores y plugboard (desde 0 parejas hasta las 10
maximas).

Este codigo lo dejé incompleto, de hecho, solo medi tiempos para la generacién maxima de
dos parejas (de las 10 maximas totales) y una sola posicidon especifica de rotores y de
reflector. En este caso, hice la prueba con los rotores II-IV-I, el reflector “B” y la posicidn
inicial “ZJQ”. Pese a estar incompleto, se ha decidido mencionarlo y dedicarle un apartado,
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ya que nos va a mostrar los beneficios que se pueden llegar a lograr evitando la fuerza bruta
mediante otros métodos (si estos, son posibles).

5.1 Resultados de ejecucion

Si computaramos solo una pareja del plugboard y rescatamos la férmula que vimos en el
apartado “3.1 Complejidad de la Enigma”, vemos que obtenemos 325 combinaciones
distintas de este (26!/(24!112/71)). Esto tardé 0.266 segundos.

Sin embargo, si computdramos para dos parejas del plugboard, tenemos que afiadir a las
combinaciones anteriores, 44 850 (26!(22121272)), por lo que ahora serian 45 175
combinaciones totales. Esto tardé 36.13 segundos.

En este punto vemos varias cosas:
- El tiempo es exponencial
- Para sola una pareja tenemos que se tarda de media 0.000696 segundos por
combinacion.
- Para dos parejas tenemos que se tarda de de media 0.000799 segundos por
combinacion.

Es decir, hay un tiempo extra que siempre se va a ir incrementando cada vez que afladamos
parejas. Al no poder hacer una ejecucién para todas las parejas, voy a coger de tiempo por
combinacidn, 0.000696, para tirar al minimo.

Si siguiéramos sumando parejas al codigo, llegariamos a un total de tenerse que computar:
216 751 068 429 025 combinaciones. Por lo que tardariamos 150 858 743 626.6 segundos.
Esto son 4 783.69 dias (como minimo). Recordemos que esto era para solo una posicion, si

quisiéramos comprobar todas las posibles (5x4x3x26x26x26, 1 054 560), serian en total 228
577 006 722 512 604 000 combinaciones. Esto en dias son 7 248 129 335 442.43.

6. Informe de GEP

6.1 Introduccion
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6.1.1 Identificacion del problema

Para identificar el problema que existe, y que queremos resolver, tenemos que imaginarnos
gue estamos en la época de la segunda guerra mundial y que, sobre todo, pertenecemos al
bando aliado.

Los britanicos, como ya he comentado, han creado la maquina Bombe y han resuelto como
crackear la mdaquina Enigma. El problema esta, que cada dia tienen que hacer un célculo
nuevo para crackearla, ya que la configuracién de la maquina Enigma cambia diariamente.
Este cdlculo, tarda alrededor de 20 minutos en realizarse, por lo que si tarddsemos menos,
conseguiriamos ser mas proactivos en la guerra y por lo tanto, conseguir ventaja sobre el
enemigo cuando son ellos los que se creen que por cifrar los mensajes y que se va a tardar
mucho en descifrarlos, creen que la tienen.

Destacar también, que para que el tiempo de cdlculo no supere los 20 minutos, hacen falta
varias personas trabajando a una velocidad alta y teniendo un conocimiento también alto
del tema en cuestion.

6.1.2 Actores implicados

Este proyecto va dirigido a todo aquél interesado en cualquiera de los dos temas que se
tratan: todo lo relacionado con la segunda guerra mundial relacionandola con la maquina
Enigma, y con todo lo relacionado con el computo de tarjetas graficas mediante CUDA.

Ademads, puede llegar a ser de gran ayuda para cualquier persona no experimentada que
esté trabajando en CUDA. Durante el proyecto, se va a ir mostrando y explicando cémo
vamos a ir paralelizando un cédigo mediante esta herramienta de programacién, qué otras
opciones podemos implementar (mejores o peores) y los resultados que vamos a obtener
con todas ellas.

Por ultimo, también puede ser también interesante para alguien que si que esté

experimentada en trabajar en CUDA, ya que puede estudiar la paralelizacién hecha y ver si
puede aun mejorarla mas.

6.2 Justificacion

Tras hacer una busqueda de diferentes trabajos de busqueda relacionados con la maquina
Enigma, la mayoria que he encontrado son mas histéricos que cientificos. Es decir, se
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centran mas en todos los hechos histéricos relacionados con el tema en lugar de trabajary
estudiar el caso de la maquina en si.

Sin embargo, hay un trabajo de una ex-alumna de matematicas de la universidad de
Zaragoza, concretamente, Sandra Pafio Badia, que hace un trabajo titulado “El uso de
permutaciones para encontrar el cableado de la maquina Enigma”[25].

Este trabajo me viene perfecto de referencia, ya que quiero mostrar, mediante el cOmputo
por fuerza bruta y luego la paralelizacion de este, todas las explicaciones que ella da sobre
las permutaciones necesarias para llevar a cabo el crackeo de la maquina Enigma.
Basicamente, va a servir para dar nUmeros en cuanto a tiempos de ejecucién sobre lo que
ella habla a lo largo de su proyecto.

6.3 Alcance

6.3.1 Objetivo principal

El objetivo principal del proyecto es el de crear un cédigo que simule el funcionamiento de
la maquina Bombe para crackear la mdaquina Enigma. Una vez se tenga, se pretende
paralelizar este lo maximo posible, mediante CUDA, para conseguir un tiempo de ejecucion
mucho mejor.

6.3.2 Sub Objetivos

Durante todo el proceso del proyecto, se espera también encontrar y explicar los fallos que
se cometieron en aquella época (sobretodo por el bando de la alemania nazi) que llevaron a
cabo a que los ingleses dieran con la forma de crackear la maquina.

Una vez hecho el crackeo de la mdquina, una idea que tuvo el profesor Agustin fue, de
incorporar el proyecto a la asignatura de tarjetas graficas de forma incremental. Esto es,
porqgue el laboratorio de la asignatura es asi, pero con distintos cédigos. Si se utilizase este
cddigo y desde un principio se sabe a dénde se quiere llegar, se verian los cambios
(mejora) en cuanto a los tiempos de ejecucidn que se van obteniendo con el cédigo a lo
largo de la asignatura.

6.3.3 Obstaculos y riesgos

Existen una serie de riesgos en todo trabajo de investigacidn, los cuales, se convertiran en
obstaculos, ya que nos impedirdn seguir la metodologia del trabajo que queriamos desde
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un principio. Sobretodo, la mayoria de estos, nos retrasaran en nuestra planificacion
temporal. Se pueden dar las siguientes situaciones:

- Quedarse estancado en la implementacién de una parte del cédigo, porque no se
sabe seguir o porque no da los resultados en cuanto a tiempo de ejecucién que
uno pensaba de un principio que iba a conseguir.

- Tener una idea mejor que la que ya se ha implementado, y por lo tanto, probarla
para ver si realmente da mejores resultados.

- No encontrar la informacion necesaria (detallada) para realizar la parte de la
implementacién que esta representa.

- Los resultados en cuanto a tiempo de ejecucidn no son los esperados y no “existe” o
no se encuentra, una forma de mejorarlo.

- Puede que no sea posible conseguir el sub objetivo de utilizar dicho cédigo para la
asignatura de tarjetas grdaficas (o solo conseguirlo parcialmente), porque los
métodos de paralelizacion no dan para abarcar todos los conceptos que se dan en la
asignatura.

- Ser altamente dependiente del funcionamiento de los nodos boada, del ordenador
desde el cual se trabaja, de la luz, el internet ...

6.4 Metodologia

6.4.1 CoOmo se desarrollara

Como he comentado anteriormente, el objetivo principal del proyecto es ver las mejoras de
tiempo al cual podemos llegar, por lo tanto, cada vez que se vayan incorporando mejoras en
el cédigo, estos tiempos se iran comparando con la implementacién anterior y con la
secuencial del principio.

Se empezard haciendo una optimizacion al cdodigo secuencial mediante la técnica
memoization, ya que podemos aprovechar el calculo de una situacion (entrada, posicién de
los 3 rotores principales y posicidn el rotor reflector) para guardarla y utilizarla en un futuro
si se vuelve a dar. Se comparara el resultado de los tiempos de esta version con la secuencial
con distintos textos de distintas longitudes para ver qué relacién se obtiene y analizarla.

Una vez en este punto, se pasara a la parte de crackear la maquina. Para esto, se buscara
todo tipo de informacidn sobre el procedimiento que llevaron a cabo en aquella época Alan

Turing y todo su equipo, junto con la maquina Bomb, disefiada para este propdsito.

Simularé el comportamiento de dicha maquina pero con un cddigo ejecutado con tarjetas
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graficas para ver el tiempo que se tarda en conseguir la configuracion inicial de la maquina
enigma a partir de un texto ya cifrado. Con este tiempo, y el que se haya encontrado en
relacién a lo que tardaban en descubrir dicha configuraciéon inicial, se podra ver cuanto
hubiese ayudado tener este tipo de hardware en aquella época.

Por ultimo, se comentara el impacto del proyecto en el que estaba relacionado Alan Turing y
la maquina Bomb en relacién a la situacién mundial que se estaba viviendo en aquél
momento.

6.4.2 Con qué medios se desarrollara

Los medios con los que dispongo en un principio seran todos los que se espera en un
principio que vaya a necesitar a lo largo del proyecto. Estos son: el céddigo secuencial con el
gue parte el proyecto, la documentacion de la asignatura previamente realizada de tarjetas
graficas, la documentacion que se encuentre en internet u otros medios, una cuenta en el
servicio boada de la universidad con la/s tarjeta/s grafica/s que haya en este para los
calculos, ordenador propio y conexién a internet con el que trabaje a lo largo del proyecto y
comunicacion con el director del proyecto.

El cddigo, realizado por el profesor Agustin Fernandez, simula el comportamiento de la
maquina enigma con 3 rotores principales funcionando (a eleccién de 5 rotores totales), un
rotor reflector y un plugboard que conecta 2 letras (un maximo de 10 parejas, tal y como era
la maquina original). El texto a encriptar/desencriptar es el que esta escrito en el cddigo o un
texto externo a este.

La documentacidon que se va a utilizar principalmente relacionada con la asignatura de
tarjetas graficas es toda la que explica el funcionamiento de la paralizacién de un cédigo
mediante cuda.

Se va a utilizar el servicio ssh para conectarse remotamente desde el ordenador donde esté
trabajando al servicio Boada de la universidad, y asi poder ejecutar el cddigo con el
hardware del que disponen.

Por ultimo, las reuniones con Agustin van a tener una importancia notable, ya que al haber
sido él, el precursor del trabajo y por lo tanto, conocedor del tema que se trata, podra ser de
gran ayuda en cuanto a detalles que se me pasen, informacién que no tenga y guia del
trabajo en si.
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6.5 Descripcion de las tareas

Se estima para este proyecto que la jornada laboral diaria es de 8 horas, siendo laborables
también los fines de semana y los festivos, puesto que es un trabajo académico. También
se tiene en cuenta, que si la tarea prevista para ese dia se acaba antes de las 8 horas
laborables, no se realizara otra tarea ese dia, sino que se empezara el dia previsto.

Se estimd que la duracion del proyecto iba a ser de 42 dias (296 horas), iniciandose el 21 de
marzo de 2022 y con fecha de finalizacién prevista el 2 de mayo de 2022. Sin embargo,
acabo finalizando el 20 de junio de 2022. Por lo tanto, la duracién total ha sido de 92 dias
(401 horas).

6.5.1 Primera parte del proyecto (P1)

Busqueda de informacion de la maquina Enigma (P1.1) (10 h)

Finalmente se han tardado 20 horas.

Es fundamental entender el funcionamiento de la mdquina Enigma, ya que es un
componente electromecanico que vamos a tener que simular mediante cédigo.

Se utilizara cualquier medio de informacion que pueda ser util: Youtube, distintas paginas
webs, blsqueda de algun libro que trate de ello...

Estudiar el cddigo inicial secuencial (P1.2) (10 h)

Partiendo del cédigo secuencial del funcionamiento de la maquina, generado por el profesor
Agustin Fernandez, hay que entenderlo y relacionarlo con lo descubierto del funcionamiento
de la maquina. Por lo tanto, la tarea (P1.1) es necesaria haberla realizado para empezar con
esta.

Tras haber estudiado el cddigo, y con la ayuda de diferentes simuladores de la maquina
Enigma que hay por internet, verificaremos que las salidas son correctas para un niumero
determinado de caracteres como entrada.

Una vez verificadas las salidas y ver que son correctas, generaremos los tiempos de
ejecucidon para distintas entradas con las que trabajaremos a lo largo del proyecto. Estas
entradas se tratan de libros en castellano que ya dispongo en formato txt, por lo que hay
centenares de miles de letras (caracteres).
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Optimizar el codigo secuencial (P1.3) (10 h)

Una vez estudiado el cddigo, podemos deducir que partes de este son optimizables. Por lo
tanto, la tarea (P1.2) es necesaria haberla realizado para empezar con esta.

Se utilizaran todos los métodos de optimizacion de cdédigo que se han aprendido en la
asignatura de PCA que se puedan aplicar al cédigo. De antemano, se sabe que uno se puede
aplicar si o si, el de memoization, ya que podemos calcular previamente todos los caminos
posibles para utilizarlos cuando se de dicha combinacion.

Después, verificaremos si generamos la misma salida que las ejecuciones con el cédigo sin
optimizar. Se utilizaran los mismos textos que se utilizaron con la tarea 2.

Una vez hemos visto que los outputs coinciden, hay que sacar los tiempos de ejecucién de
estos para poder compararlos con los generados con el cédigo sin optimizar.

Existe la posibilidad, y bastante alta, de que la optimizacién no haya sido suficiente y el
cddigo sin optimizar nos genere mejores tiempos de ejecucion. Esto es debido, a que el
texto que introducimos para encriptar no es lo suficientemente extenso como para que por
lo menos, la técnica de memoization tenga efecto. No hay que preocuparse de ello, puesto
gue dicha técnica permite ser paralelizada.

Revisar programacion en cuda (P1.4) (6 h)

Como hemos comentado, la técnica de memoization puede ser paralelizada, por lo tanto,
vamos a recapitular toda la informacidn sobre la programaciéon en cuda que obtuve en la
asignatura de tarjetas graficas: la idea general de la programacidon en cuda, la programacién
de varias tarjetas graficas y la ejecucién con streams. Se va a utilizar la documentacién de

dicha asignatura.

Esta tarea puede ir haciéndose en cualquier momento, ya que no necesita de una tarea
previa para realizarse.

Revisar el hardware en boada (P1.5) (minutos)

Para la programacién en cuda que vamos a realizar, nos es importante saber con qué
tarjetas graficas vamos a estar trabajando, sobre todo a nivel de bloques y de threads de los
gue disponen.

Esta tarea, al igual que la tarea 4, puede ir realizdndose en cualquier momento, ya que no es
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dependiente de otra.

Programar en cuda el codigo optimizado (P1.6) (20 h)

Finalmente se han tardado 30 horas.

Vamos a implementar en el cdédigo optimizado, por lo menos en la parte de la técnica de
memoization, la idea general de la programacién en cuda (ejecuciéon en bloques con un
numero especifico de threads por bloque, ...). Por lo tanto, la tarea (P1.3) debe de haberse
realizado para empezar con esta.

Una vez implementado, hemos de verificar si la salida de este sigue siendo la misma que la
del cédigo general. Si es asi, pasaremos a sacar los tiempos de ejecucidn para las mismas

entradas y compararlo con los obtenidos anteriormente, para asi, ver si cuanto hemos
mejorado con la paralelizacién.

Mejoras en el cédigo paralelizado (P1.7) (10 h)

Tarea obsoleta, se hace junto a la tarea P1.6.

Una vez hemos paralelizado el cddigo y visto los tiempos de ejecucién, podemos tratar de
mejorarlo haciendo modificaciones al cddigo, como por ejemplo, utilizar una distribucion
distinta de los bloques y los threads por bloque de la que hemos hecho inicialmente. Por lo
tanto, la tarea (P1.6) debe haberse realizado para empezar con esta.

Luego, hariamos lo mismo, generariamos los nuevos tiempos de ejecucién de esta version y
los analizaremos con los generados por la versidn inicial, la optimizada y la version anterior
paralelizada.

Programacion multiGPU (20 h)

Nueva tarea, no se tuvo en cuenta.

Una vez tenemos nuestra version de la maquina Enigma en cuda, paralelizaremos la

ejecuciéon con las 2 GPUs que hay en el nodo 9 de boada. Por lo tanto, se necesita la tarea
P1.6 previamente realizada para empezar con esta.

6.5.2 Segunda parte del proyecto (P2)

Busqueda de informacion de como crackearon los ingleses la maquina Enigma
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(P2.1) (30 h)

Es muy importante saber el procedimiento que utilizaron para crackear la maquina, sobre
todo en que se basaron para ello. Esto servird para luego plasmarlo en el cédigo que
generamos que simulara lo mismo. Por lo tanto, la tarea (P1.1) debe haber sido realizada
para empezar con esta.

Se utilizarad cualquier medio de informacidon que pueda ser atil: Youtube, distintas paginas
webs, busqueda de algun libro que trate de ello...

Generar codigo general del crackeo (P2.2) (50 h)
Finalmente se han tardado 70 horas.

Se implementara una primera versidon del cddigo para crackear la maquina Enigma. Esta
version va a ser lo mas fiel posible a la Bombe original. Por lo tanto, la tarea (P2.1) debe
haberse realizado para empezar con esta.

Una vez implementado, se verificara si la salida es la correcta, es decir, a través de una
entrada, en este caso un texto encriptado (salida del cddigo inicial del proyecto), encontrard
una configuracién inicial de la maquina. Si utilizamos nuestro cddigo anterior de la maquina
con esta configuracion inicial, y se desencripta correctamente, habremos logrado el
objetivo. Por lo tanto, la tarea 2 debe de haberse realizado para empezar con esta.

Tras verificar la salida y ver que es correcta, pasaremos a obtener el tiempo de ejecucion.
Optimizar cédigo general del crackeo (P2.3) (10 h)

Tarea obsoleta, no era necesaria.

Una vez verificamos que el cédigo general del crackeo funciona, vamos a implementar
optimizaciones en el cddigo para mejorar el tiempo de ejecucién de este, ya que como
vimos, funciona por fuerza bruta. Por lo tanto, la tarea (P2.2) debe haberse realizado para
empezar con esta.

Como en este punto en el que estoy escribiendo la documentacion, no se como funciona al
cien por cien el crackeo de la maquina porgue aun no he buscado suficiente informacién, no

estoy seguro de que como minimo, se pueda utilizar la técnica de memoization, por lo que
es muy posible de que el cdédigo no pueda ser optimizado.
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Si hemos podido optimizar el cddigo, pasamos a verificar si la salida que genera es la misma
qgue el cddigo general del crackeo para la misma entrada.

Tras verificar la salida y ver que es correcta, pasaremos a obtener el tiempo de ejecucidény a
compararlo con el que obtuvimos con el cédigo general del crackeo.

Programar en cuda el codigo general del crackeo (P2.4) (40 h)

Una vez funciona nuestro cédigo que simula el funcionamiento de la Bombe, pasamos a
paralelizarlo con cuda.

Tras la implementacién, verificaremos que la salida que nos genera es la misma que el
cddigo general del crackeo, y si vemos que es correcto, sacaremos los tiempos de ejecuciéon
de nuestra version paralelizada y los compararemos con los tiempos sacados de la version
general y de la optimizada.

Programacion multiGPU (P2.5) (20 h)

Una vez hemos verificado que nuestra version paralelizada con tarjeta gréfica es la mejor y
mas rapida, probaremos a generar un cédigo para realizar el mismo cdlculo pero con mas de
una tarjeta grafica. Por lo tanto, la tarea (P2.4) debe haberse realizado previamente para
empezar esta.

Tras esto, verificaremos si la salida sigue siendo la correcta, sacaremos el tiempo de

ejecucidn para distintos numeros de tarjetas graficas y los compararemos con las versiones
anteriores.

Programacion con streams (P2.6) (20 h)

Tarea obsoleta, no era necesaria.

Una posible mejora a la ejecucion de un cédigo ejecutado por varias tarjetas graficas es
mejorarlo con la ejecucién por streams. Por lo tanto, implementaremos una versién con
streams de nuestro cddigo multiGPU, por lo que la tarea (P2.5) debe haberse realizado para

empezar con esta.

Como siempre, tras verificar que la salida es correcta, generamos los tiempos de ejecucién y
los compararemos con la versidén multiGPU, para ver si la hemos podido mejorar.

Maquina check secuencial (50 h)
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Nueva tarea, no se tuvo en cuenta por desconocimiento.

Una vez visto el resultado de la Bombe, seguramente este sea incompleto, por que
deberemos de crear otro programa que simule lo que hacian los ingleses para probar
configuraciones hasta que diesen con la correcta. Para que esta tarea pueda desarrollarse,
hace falta que la tarea (P2.2) se haya finalizado y funcione correctamente.

Maquina check con cuda (30 h)

Nueva tarea, no se tuvo en cuenta.

Una vez visto que llegamos a una configuracién de la Enigma correcta, hemos de mejorar
nuestro cédigo de la maquina check para que mediante programacién en cuda, se ejecute
mas rapido. Por lo tanto, necesitamos que la tarea anterior se haya realizado y funcione
correctamente.

Crackeo con fuerza bruta (10 h)

Nueva tarea, no se tuvo en cuenta.

Para mostrar lo importante que fue el método con el que crackearon la maquina Enigma,
evitando a toda costa la fuerza bruta, se hard un programa que probard todas las

configuraciones de Enigma posibles para el texto que queremos desencriptar. Para que esta
tarea pueda realizarse, debe de haberse terminado la tarea anterior.

6.5.3 Tercera parte del proyecto (P3)
Documentacion (P3.1) (30 h)
Finalmente se han tardado 60 horas.

Tras haber ido apuntando y analizando todos los resultados obtenidos hasta llegar aqui,
tendremos que documentar todo el proceso del proyecto y sacar conclusiones de dichos
resultados. Finalmente se han anotado los resultados una vez estabamos ya
documentando, por lo que esta tarea ha sufrido un gran retraso frente a lo previsto.

La tarea (P2.6) debe haberse realizado para empezar con esta, ya que es la ultima del
proyecto.
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6.5.4 Resumen de las tareas

Tabla obsoleta, el computo de horas totales es de 401, debido al aumento del tiempo
requerido para realizar algunas de las ya previstas y de la introduccidon de nuevas tareas
que no se habian tenido en cuenta por falta de informacion sobre el tema en cuestién.

Para la lectura de la Tabla X, vamos a utilizar sigla “PR” para hacer referencia al
programador, y “RB” para el responsable de boada.

Amarree
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Tabla 28. Resumen de las tareas
6.6 Estimaciones y Gantt
Diagrama de Gantt obsoleto, debido al niimero de horas totales.

Para basarme en el diagrama de Gantt de la Figura X, he supuesto que la jornada laboral
diaria es de 8 horas. Como es un trabajo académico, fines de semanas y festivos también son
laborales.
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Figura 82. Diagrama de Gantt

6.7 Gestion del riesgo: planes alternativos y obstaculos

Tal y como hemos comentado anteriormente, pueden originarse a lo largo del proyecto una
serie de obstaculos que algunos de ellos tienen facil solucion (independientemente del
tiempo que se emplee en ella) y otros que no o es imposible.

Al ser un trabajo incremental (se quiere mejorar siempre lo que ya se tiene), si nos
estancamos en una parte de la implementacion del cédigo y no hay forma de proseguir, se
tratara de realizarlo de una forma mas sencilla o, utilizar la que ya estd implementada.

Siempre que se piense en una idea mejor de la que se ha implementado, se probara para ver
si realmente mejora lo ya realizado. Si es asi, estd serd la version con la que seguiremos
trabajando. Si por el contrario, no lo es, esta se descartara.

Si por alguna razén, no encontramos en internet la informacidn necesaria para implementar
una tarea, se recurriria a buscar libros. Esto hay que tenerlo en cuenta, ya que se invertiria
tiempo de espera si se hace una compra online y un gasto que no se contempla desde un
principio.

Al estar trabajando con material informatico, cualquier problema en estos dispositivos nos
penalizara. Si el problema estd en el ordenador desde donde se trabaja, se utilizara otro
ordenador (situado en un ambito de trabajo que no es el mio) y se pediran las piezas que
haya que pedir para reparar el ordenador. Se optard por la misma solucién si hay un
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problema en la red eléctrica o en internet, ya que el ordenador desde el cual se trabaja, es
de sobremesa. Si por el contrario, el problema viene de boada, la Unica solucién que existe
es comprar los componentes que se hayan estropeado e instalarlos.

Por ultimo, si vemos que lo que se ha empezado de CUDA no cubre todo lo que la asignatura
de tarjetas graficas abarca, no hay problema con ello, ya que no es el objetivo principal del

proyecto, si no una ampliaciéon con la que el profesor Agustin Ferndndez se podria ver
beneficiado.

6.8 Gestion Econdmica

6.8.1 Costes de personal (CPA)

Para este proyecto, nos hacen falta dos perfiles de trabajador: el programador, y el
encargado de gestionar los nodos boada que estan situados en la universidad.

He realizado una busqueda sobre lo que cobra de media un programador en barcelona,
mediante la web glassdoor [26], y el resultado ha sido de 30 000€ al afio. Suponiendo que
una jornada laboral son de 8 horas diarias, de lunes a viernes y un mes al afio de vacaciones:

30 000€/afio / 1.76horas/afo = 17.04€/hora

Teniendo en cuenta el precio que hay que pagar para la seguridad social, el coste de la
empresa para este trabajador seria de:

30 000€/afio x 1.3 = 39 000€/afio, y por lo tanto:
39 000€/afio / 1.76horas/afio = 22.16€/hora

Por otra parte, lo que cobra el encargado de gestionar y mantener activos los nodos boada
es alrededor de 40 000€ al afio, segun el profesor Agustin Fernandez, que trabaja en la
universidad. Suponiendo las mismas condiciones de trabajo:

40 000€/afio / 1.76horas/afio = 22.73€/hora

Teniendo en cuenta el precio que hay que pagar para la seguridad social, el coste de la
empresa total por este trabajador seria de:

40 000€/afio x 1.3 = 52 000€/afio, y por lo tanto:
52 000€/afio / 1.76horas/afio = 29.54€/hora

107



En la Tabla 1.1, se muestra una tabla resumen de los perfiles que van a ejecutar cada tarea,
el tiempo que lo van a estar haciendo y el coste para la empresa de cada una de ellas.

La siguiente tabla esta obsoleta debido al nimero de horas totales necesarias para la
realizacion del proyecto. El nimero de horas trabajadas por parte del programador es de
401 horas, y el del responsable de los nodos boada es de 180 horas (se calculé mal en la
Tabla 1.1 las horas de este trabajador, ya que solo es necesario que realice su trabajo
cuando el programador necesita ejecutar en boada). Teniendo en cuenta los costes por
hora acabos de ver, tenemos que los costes directos por actividad son de:

- Programador: 8 886.16€
- Responsable boada: 5 317.2€
- Total: 14 203.36€

Siglas Dk rigeidn Hesas Coile
Brimers parts del propacin Progesmador Aespansatie brads
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P& Brogramar e cuda o codign splimizada F1 m | %8 16 E
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Tozal 2595 20 12515 B8 €

Tabla 29. Costes directos por actividad

6.8.2 Costes genéricos (CG)

6.8.2.1 Amortizaciones

Hardware

Para el programador, se va a necesitar un ordenador de sobremesa con el que trabajar.
Actualmente, se dispone de uno valorado en 900€ y una pantalla de 150€. Si suponemos,
gue el tiempo medio de su vida Util es de unos 4 afios (72 meses), que el proyecto va a durar
296 horas, que al afio hay 220 dias laborables y que estos dias tienen 8 horas de trabajo:
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La siguiente amortizacion estd obsoleta, el nimero de horas totales es de 401, por lo que
la amortizacion del ordenador sera de 59.81€.

(900€ + 150€) x 296h/4afios x 1afio/220dias x 1dia/8horas = 44€

Por la parte de boada, tenemos un intel Xeon E5-26020v2 que cuesta alrededor de 450 euros
[27]. Ademas, disponemos de 4 tarjetas graficas TESLA k40c de NVIDIA, que cuestan
alrededor de 800 euros cada una [28]. Por lo tanto, si seguimos suponiendo la misma vida
util, la amortizacion sera de:

La siguiente amortizacidon esta obsoleta, se ha acabado trabajando en un nodo de boada
que solo tiene 2 graficas en lugar de 4 y las horas totales del nodo activo no han sido las
planificadas, sino 180, por lo que el coste de la amortizacion sera de 44.74€.

(450€ + 4 x 800€) x 296h/4afios x 1afio/220dias x 1dia/8horas = 153,46€

Software

Todo el software que se va a utilizar es una distribucion de linux, por lo tanto, un sistema
operativo gratuito.

La siguiente amortizacidn total esta obsoleta: 104.55€.

En total, las amortizaciones son de: 44€ + 153.46€ = 197.46€

6.8.2.2 Consumo eléctrico

Para el ordenador de sobremesa que hemos comentado anteriormente, observamos que el
TDP de su procesador (i5-9600k)) es de 95W [29], v el de su tarjeta grafica (rtx 2060) es de
160W [30]. Sin embargo, este ordenador no tendra una carga de trabajo para nada alta, por
lo que el consumo serd mucho menor. Ademads, tiene un monitor cuyo TDP es de 45W [31].
Por lo tanto, teniendo en cuenta que va a estar trabajando las 296 horas del proyecto:

El siguiente consumo esta obsoleto debido al niimero de horas totales: 50 125 = 50.12
kWh.

(~50W + ~30W + ~45W) x 296h = 37 000Wh = 37kWh

A partir de aqui, a fecha de consulta 10 de marzo de 2022, el precio del kWh es de
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0.505998€ [32], podemos saber que el coste eléctrico de dicho ordenador va a ser de:

El siguiente coste esta obsoleto debido a consumo eléctrico: 25.36€/proyecto.

0.505998€/kWh x 37kWh = 18.72€/proyecto

Por otra parte, los nucleos boada vienen instalados con un Intel Xeon E5-26020v2, cuyo TDP
es de 80W [2] (se consumird menos). Ademas, dispone de 4 tarjetas graficas TESLA K40c, con
un TDP de 245W [11]. Teniendo en cuenta, que el consumo en las tarjetas graficas, sera solo
alto cuando mandemos el cédigo a ejecutar, vamos a suponer que de las 200 horas que
boada tiene que estar activo, va a estar trabajando al 100% media hora:

El siguiente consumo esta obsoleto debido al nimero de horas totales, nimero de horas
donde boada trabaja al 100% (50%, debido a que mucha parte del proceso de
documentacidn necesita de resultados de tiempos de ejecucion) y al nimero de tarjetas
graficas del nodo boada: 11.91 kWh 50% de carga y 51.3 kWh al 100%. Por lo que 63.21
kWh totales.

(~65W + 30Wx4gpus) x 199.5h = 36 907.5Wh = 36.91kWh
(80W + 245Wx4gpus) x 0.5h = 530Wh = 0.53kWh

Por lo tanto, el coste eléctrico de los nodos boada va a ser de:

El siguiente coste esta obsoleto debido a consumo eléctrico: 31.98€/proyecto.

0.505998€/kWh x (36.91kWh + 0.53kWh) = 18.94€/proyecto

El siguiente coste esta obsoleto: 25.36€/proyecto + 31.98€/proyecto = 57.43€/proyecto.

En total, el coste eléctrico del proyecto va a ser de: 18.72€ + 18.94€ = 37.66€

6.8.2.3 Factura de internet

El coste mensual de la tarifa de internet contratada con el ordenador de sobremesa es de
23.66€. Suponiendo que el nodo de boada va funcionar con la misma compaiiia, el coste de
internet en lo que dura el proyecto es de:

3meses x 2tarifas x 23.66€/mes = 142 euros/proyecto
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6.8.2.4 Total costes genéricos

En la Tabla 1.2, se muestra un coste total de todos los costes genéricos que hemos
comentado a lo largo del documento hasta ahora.

La siguiente tabla estd obsoleta, debido a todos los cambios que hemos visto a lo largo del
apartado “8.2 Costes genéricos (CG)”. El total es de 104.55€ + 57.43€ + 142€ = 303.98€.

Concepio Coste
Amartizaciones 197 46 €
Consumo eléctrico AT BB E
Factura internat 142,00 €
Total JTTI2€

Tabla 30. Costes genéricos

6.8.3 Contingencias

Ya que siempre es importante contemplar la posibilidad de que hayan complicaciones y/o
contratiempos durante la realizacién del proyecto, estos, pueden hacer que el coste final sea
mayor. Por lo tanto, podemos dar un margen del 15% del precio:

Las siguientes contingencias estan obsoletas, debido a los cambios vistos anteriormente:
(14 203.36€ + 303.98€) x 0.12 = 1 740.88€.

(12 519.80€ +377.12€) x 0.12 = 1 547.63€

6.8.4 Imprevistos

Por ultimo, hace falta valorar cualquier tipo de imprevisto que pueda suceder a lo largo del
trabajo. En el caso de este proyecto, cualquier reemplazo de hardware tiene que tenerse en
cuenta, ya que serd un extra al coste total del proyecto. También, y algo muy probable, es
gue el tiempo de implementacidon de algunas tareas se alargue, ya que puede que muchas
funcionalidades cuesten mds de lo que se cree en ser ideadas. La Tabla 1.3 muestra un
resumen de los imprevistos que pueden darse y de su coste, asi como la probabilidad de que

estos ocurran.
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Imprevista | Coste parcial | Probabilidad ] Coste
PC Sobremesa
Components | 150,00 €| 5 00% | 750 €
Modo boada
Musva CPU 450 00 € 5.00% 2250%
Muswa GPU 800,00 € 20.00% 160,00 €
Humano
Increments tempo reemplazo hardware {1h) 29 54 € 30_00% 306 €
Incremenio tiempo implementacidn (100} 227 D€ 80.00% 161 84 €
Total 380,70 €

Tabla 31. Costes de imprevistos

Tal y como se puede observar, la probabilidad de reemplazo de hardware es la suma de
probabilidades de reemplazo de componente del PC de sobremesa, de la CPU y/o GPU del
nodo boada (5% + 5% + 20%).

6.8.5 Coste total del proyecto

En la Tabla 1.4, se muestra el coste total del proyecto, teniendo en cuenta los apartados
anteriores.

La siguiente tabla esta obsoleta debido a todos los cambios que hemos ido viendo: (14
203.36€ + 303.98€ + 1 740.88€ + 380.7€ = 16 628.92€.

Conceplo Coste
CPA 1251980 €
GG ITTNLE
Contingencias 1547 B3 €
Imprevistos 380,70 €
Total 1482525 €

Tabla 32. Coste total del proyecto

6.8.6 Control de gestion

Debido a los problemas externos a este proyecto, que estan afectando a la subida de precios
de muchos productos, y en el que en este caso nos concierne, la luz, se hara a la semana un
calculo de lo que se haya gastado de electricidad y se pagara la diferencia con parte del coste
de contingencias que habiamos calculado.

Por ahora, sabemos que el ordenador va a tener un coste de luz de 18.72€ en todo el
proyecto. Si va a estar trabajando 296 horas en total, y cada semana tiene 40 horas
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laborables. Obsoleto, sabemos que el ordenador va a tener un coste de luz de 25.36€, y
que va a estar trabajando 401 horas. El siguiente coste por semana es correcto pero
porque coincide el resultado con los nuevos datos.

296horas x 1semana/40horas = 7.4 semanas, por lo que:
18.72€/7.4semanas = 2.53€/semana

Por otro lado, sabemos que el nodo boada va a tener un coste de luz de 18,94€ en todo el
proyecto. Si va a estar trabajando 200 horas en total. Obsoleto, sabemos que el coste de luz
del nodo boada va a ser de 31.98€ que el total de horas van a ser de 180, por lo que el
coste por semana es de: 7.11€.

200horas x 1semana/40horas = 5 semanas, por lo que:
18.94€/5semanas = 3.79€/semana

6.9 Informe de Sostenibilidad

6.9.1 Fita inicial

6.9.1.1 Autoevaluacion

Siempre he sido partidario de reutilizar lo maximo posible los recursos. En mi caso, todo el
hardware de los ordenadores viejos siempre he aprovechado al maximo posible todo lo que
funcionaba para comprar los minimos componentes posibles para asi, darle un ordenador en
condiciones a un familiar o a amigos/conocidos. Todo esto es debido, a que en varias
ocasiones he visto documentales sobre el tema de verter componentes, y tengo muy
integrado las consecuencias que esto conlleva (tanto ambientales como sociales).

Sin embargo, la encuesta me ha dado a conocer muchos otros aspectos que desconocia y
qgue por ende, nunca los tenia en cuenta, como por ejemplo todo lo relacionado con el
codigo deontoldgico, consecuencias en la justicia social, ... Es decir, los aspectos generales si
los tenia presente, pero cuando vas a detalles mas especificos de dimensién social, nunca
me han hablado de ellos.

6.9.1.2 Dimension Economica
Tal y como comentamos en el apartado de “Dimensién Ambiental”, el hardware utilizado en

el nodo boada tiene un precio que siempre va a ir al alza, ya que cuanto mas potente sea
mas nos beneficia, y por ende, mas caro. Sin embargo, el ordenador de sobremesa que sirve
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para programar, si que puede ser uno de menos sofisticado, y por ende, mas barato.

Es decir, si comparamos los costes de este proyecto con similares, una parte del proyecto si
gue podria estar reducido, es decir, el coste del ordenador de sobremesa, ya que no se
necesita de mucha potencia para la realizacion de este. Sin embargo, la parte de boada,
aumentaria cada vez que se quiere revisar este proyecto o mejorarlo, ya que las tarjetas
graficas cada vez sén mas sofisticadas y por lo tanto, mas caras.

Una vez comentado esto, y viendo los costes que hemos ido anotando a lo largo de este
documento, visto que no hay necesidad del proyecto (apartado “Dimensién Social”), no es
rentable hacer el proyecto, por su elevado coste.

6.9.1.3 Dimension Ambiental

Por parte del nodo de boada, se necesita de un hardware potente, ya que cuanto mas lo sea,
mas potencia de calculo nos va a ofrecer, y eso es precisamente lo que necesitamos. Por lo
tanto, no podemos reutilizar cualquier tarjeta grafica e instalarla en el nodo, sind que
tenemos que buscar un conjunto de 4, cuanto mds potentes mejor.

Sin embargo, por parte del ordenador de sobremesa que va a ser utilizado para programar, si
gue podemos buscar uno que sea mucho menos sofisticado que el que se ha propuesto en el
proyecto (ya que me he basado en que es el que dispongo actualmente). Con esto, lo que
haremos sera disminuir, obviamente, el stock de esta gama de ordenadores y mandaran a
fabricar otros de la misma gama, haciendo que estas fabricas gasten menos recursos de que
si hubieran mandado a fabricar ordenadores mas potentes.

6.9.1.4 Dimension Social

A nivel personal, este proyecto me va a aportar mucho, ya que primero de todo, me adentro
en el mundo de la gestién de un proyecto, cosa que en un futuro es muy posible que esté
involucrado en uno, tanto como el que lo gestiona, como un trabajador. Ademas, voy a
trabajar un dmbito de la informatica (hardware) que es a la que quiero dedicarme, por eso
he elegido la especializacion de “Ingenieria de computadores” y mas especifico, en el
apartado de investigacion, ya que el proyecto va de eso.

Como dijimos al principio del primer documento de GEP, el trabajo no pretende ayudar
socialmente con su resultado, ya que es un trabajo de investigacidon basado en un momento
concreto de la historia. Lo que se quiere dar, es una idea de la evolucion que ha tenido el
hardware hasta ahora, comparando la maquina Bombe, con la que crackearon la
codificacion de la maquina Enigma, con las tarjetas graficas actuales. Por lo tanto, no existe
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una necesidad del proyecto.

6.9.2 Fita final

6.9.2.1 Desarrollo del proyecto

6.9.2.1.1 Impacto Econémico

Si se comparan los costes que hubo inicialmente con los finales se observan desviaciones por
dos motivos:

- El proyecto ha tardado mas en realizarse (132 horas adicionales).

- Se ha reducido las horas de trabajo del nodo de boada respecto a las propuestas
inicialmente, debido a que todo cédigo secuencial puede trabajarse en local y solo
mandarlo a boada cuando necesitemos trabajar en cuda.

Para el coste del personal, se ha pasado de tener un coste de 12 519.89€ a un coste de 14
203.36€.

Para los costes genéricos:

- Las amortizaciones han pasado de tener un coste de 197.46€ a un coste de 104.55€

debido a que no se ha utilizado tanto hardware como el que se creyd necesario.

- El consumo eléctrico ha pasado de tener un coste de 37.66€ a un coste de 57.45€.

- Lafactura eléctrica ha quedado igual.

- Eltotal de costes genéricos ha pasado de 377.12€ a 303.98€.
Las contingencias han pasado de tener un coste de 1 547.63€ a un coste de 1 740.88€.
Por lo tanto, el coste total del proyecto ha pasado de ser 14 825.25€ a un coste de 16
628.92€, todo y habiendo reducido en gran parte las horas activas del nodo boada. Sin
embargo, las horas totales del proyecto se han elevado bastante.

6.9.2.1.2 Impacto ambiental

Partiendo de los dos puntos vistos en el apartado anterior, que diferencian las predicciones
del documento inicial con lo necesito para el | final, tenemos que:
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- Para el documento inicial, un consumo eléctrico del hardware de 74.44 kWh.
Ademas, partiendo de que un trabajador consume 0.1 kWh en su rutina habitual,
tenemos que el programador consume 29.6 kWh y que el encargado de boada
consume 20 kWh, por lo que un total de 124.04 kWh.

- Para los resultados finales, tenemos un total de 113.33 kWh para el consumo
eléctrico del hardware, un consumo de 40 kWh por el programador y uno de 18 kWh
para el encargado del nodo de boada, por lo que un total de 171.33 kWh.

Al igual que en el apartado anterior, la idea es solo estar conectado a boada cuando sea
necesario, es decir, cuando tenemos que tomar tiempos o programar en paralelo. Para
probar ejecuciones secuenciales, las podemos realizar desde casa, ya que el hardware es
menos potente y por lo tanto, consumiremos menos.

6.9.2.1.3 Impacto social

La realizacién de este proyecto nos ha hecho pensar mucho tanto a mi director de proyecto
como a mi sobre los resultados que se pueden obtener mediante el ingenio humano en
contra de puros algoritmos de fuerza bruta. Por lo tanto, ser conscientes de estas ideas para
luego ponerlas en practica en nuestro ambito de trabajo tan pronto como sea posible.

6.9.2.2 Vida util

6.9.2.2.1 Impacto social

Todo aquél que quiera aprender o leer sobre ejecuciones y decisiones tomadas sobre
programas paralelizados en cuda se va a ver beneficiado de este proyecto, ya que en este, no
solo se muestran ideas de como ejecutar algoritmos, sino de analisis de por qué una
ejecucion es buena, por que no lo es, como se podria mejorar...

Ademads, existe la posibilidad de que el profesor Agustin Fernandez, utilice algin cédigo de
este proyecto para llevarlo al campo de la asignatura que ejerce, Targetas Graficas y

Aceleradores, para asi, organizar las clases de laboratorio de una forma progresiva,
trabajando con el cédigo de la Enigma.

7. Conclusiones y lineas abiertas

A lo largo del proyecto, nos hemos ido dando cuenta de un problema que ha pasado desde
siempre en el ambito de la criptografia, que sigue ocurriendo y que lo seguira haciendo, es el
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tema del fallo humano. Una brecha de seguridad que si otro individuo la detecta, la va a
explotar y podra realizar un ataque. En el caso de la Enigma, dos fallos humanos que fueron
los causantes de que se pudiera crackear: el primero, que una letra que se introducia en la
Enigma no podia generar la misma, y la segunda, que la milicia nazi empezaban los mensajes
siempre con el mismo patrdn (el parte meteorldgico).

Nos hemos dado cuenta también de que cuando existen alternativas a la fuerza bruta hay
qgue aplicarlas inmediatamente, ya que la reduccién en el tiempo de cdmputo se ve
favorecida enormemente. Habra veces que para llegar a tal reducciéon como se llegd con la
Bombe, se requiera de mucho ingenio como el de Alan Turing, pero vale la pena pensar estas
alternativas a la fuerza bruta.

En cuanto al ambito de cuda, hemos visto que no todos los programas estan pensados para
gue tengan un buen rendimiento en cuda; a unos se les podrd hacer cambios menores
(como es el caso de la Bombe, ya que se queria llegar a una ejecuciéon que simulase lo mas
fielmente a lo que se realizd), a otros, habrda que pensar soluciones alternativas para
acomodarlos mejor a una ejecucion en cuda. Como hemos visto y comentado, este
acomodamiento se basa, principalmente en 3 factores: que no haya divergencia en el
camino de ejecucién de los threads, que se hagan accesos a memoria contiguos y alineados
y que se oculte la latencia de memoria, explotando los accesos a esta.

Una vez finalizado el proyecto, toda la idea que hay detrds de este y los cddigos pueden ser
empleados y expandidos de muchas formas:

- Se comentd con el profesor Agustin Fernandez de utilizar algun cédigo en los
laboratorios de la asignatura de TGA para ver qué mejoras recibe un cdodigo al ser
paralelizado. También pueden llegar a ser Utiles para entender y analizar conceptos
de cuda, sobre todo conceptos como los accesos a memoria (analizarlos con el
profiler de nvidia, por ejemplo), tal y como se ha hecho en varios apartados.

- Pueden expandirse los codigos para que hagan uso de lo que llamaron “ring
settings”, el cual, permite seleccionar los primeros contactos entre dos rotores, por lo
gue se elevaria cada posible posicién de un rotor de 26 posibles posiciones iniciales a
26x26.

- Pueden expandirse los cddigos para que hagan uso de mas parejas del plugboard,
hasta un maximo de 13. Esto aumentaria la complejidad de la Enigma enormemente,
y por lo tanto, de los célculos.

- Puede expandirse los cédigos para que ejecuten una maquina Enigma con 5 rotores,
y dos de ellos con 2 muescas, tal y como hicieron la milicia nazi mas tarde con las
comunicacion del ejército naval. Por lo tanto, la maquina Bombe deberia ser
trabajada de nuevo.

117



- Puede estudiarse la mejora del cddigo de fuerza bruta, aunque esté incompleto. La
mejora sustancial se veria afectada por una generacidon de las combinaciones mds
6ptima de la que he realizado, ya que esta, se basa en acceder a matrices cada vez
mas grandes.
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