
Paralelizando la máquina Enigma
Grado de Ingeniería Informática

Ingeniería de computadores

Facultad de Informática de Barcelona

Universidad Politécnica de Cataluña

Autor: Iván Reolid Torres

Director: Agustín Fernández Jiménez

(Departamento de Arquitectura de Computadores)

Data de defensa: 28/06/2022

2

Resumen

A principios de la segunda guerra mundial, surgió el mayor método de encriptación hasta

entonces. Este, se realizaba grácias a una máquina que había sido diseñada por los alemanes

para fines del mercado, y que el ejército alemán la mejoró para encriptar sus mensajes

durante el periodo bélico, la máquina Enigma.

Durante este tiempo, un grupo de científicos ingleses estuvo trabajando junto con Alaran

Turing para poder descencriptar estos mensajes. Utilizar fuerza bruta para este fin era una

práctica impensable, debido a la complejidad que tenía la máquina Enigma (su total de

combinaciones iniciales posible era de 158 962 555 217 826 360 000). Por este motivo,

tuvieron que buscar otra alternativa y la encontraron, el método de contradicciones. A partir

de una hipótesis inicial (una combinación de la enigma inicial), llegar a una contradicción

para poder descartar todas las combinaciones que han ido apareciendo hasta ese momento.

Con esto, se llegaba finalmente a una correcta.

Este método de contradicciones fue llevado a un nivel superior cuando encontraron fallos en

las criptografías de los militares nazis (repeticiones de patrones en sus mensajes) y una

funcionalidad reducida que tenía la máquina Enigma: una letra no podía encriptarse por ella

misma.

Este proyecto trata de plasmar y simular todo el trabajo que realizaron mediante código y

hardware actual, para dar una visión de lo importante que puede llegar a ser evitar la fuerza

bruta cuando se puede. Se realizará un código de fuerza bruta para compararlo con el

método de contradicciones.

Resum

A principis de la segona guerra mundial, va sorgir el mètode més gran d'encriptació fins

llavors. Aquest es realitza gràcies a una màquina que havia estat dissenyada pels alemanys

com a únic objectiu el mercat, i què l'exèrcit alemany la va millorar per encriptar els seus

missatges durant el període bèl·lic, la màquina Enigma.

Durant aquest temps, un grup de científics anglesos va estar treballant juntament amb

Alaran Turing per poder descencriptar aquests missatges. Utilitzar força bruta per a aquest fi

era una pràctica impensable, a causa de la complexitat que tenia la màquina Enigma (el seu

total de combinacions inicials possible era de 158.962.555.217.826.360.000). Per això, van

haver de buscar una altra alternativa i la van trobar, el mètode de contradiccions. A partir

d'una hipòtesi inicial (una combinació de l'enigma inicial), arribar a una contradicció per

poder descartar totes les combinacions que han aparegut fins aleshores. Amb això, arriba

finalment a una de correcta.

3

Aquest mètode de contradiccions va ser portat a un nivell superior quan van trobar

mancances en les criptografies dels militars nazis (repeticions de patrons als seus missatges)

i una funcionalitat reduïda que tenia la màquina Enigma: una lletra no podia encriptar-se per

ella mateixa.

Aquest projecte tracta de mostrar i simular tota la feina que van realitzar mitjançant codi i

maquinari actual, per donar una visió de com pot ser d'important evitar la força bruta quan

es pot. Es farà un codi de força bruta per comparar-lo amb el mètode de contradiccions.

Abstract

At the beginning of the second world war, the greatest encryption method until then

emerged. This was done thanks to a machine that had been designed by the Germans for

market purposes, and that the German army improved to encrypt their messages during the

war period. This machine was called Enigma.

During this time, a group of English scientists was working together with Alaran Turing to

decrypt these messages. Using brute force for this purpose was an unthinkable practice, due

to the complexity of the Enigma machine (its total number of possible initial combinations

was 158,962,555,217,826,360,000). For this reason, they had to look for another alternative

and they found it, the method of contradictions. Starting from an initial hypothesis (a

combination of the initial enigma), arrive at a contradiction in order to rule out all the

combinations that have been appearing up to that moment. With this, a correct one was

finally reached.

This method of contradictions was taken to a higher level when they found flaws in the Nazi

military's cryptography (pattern repetitions in their messages) and a reduced functionality

that the Enigma machine had: a letter could not be encrypted by itself.

This project tries to capture and simulate all the work they did using current code and

hardware, to give a vision of how important it can be to avoid brute force when possible. A

brute force code will be performed to compare it with the contradictions method.

4

5

Índice de contenidos

1. Encriptación histórica 14

1.1 Necesidad de encriptar los mensajes 14

1.2 Orígenes de la criptografía, criptografía clásica 14

1.3 Criptografía en la Edad Media 15

1.4 Criptografía en el Renacimiento 16

2. Máquina Enigma 21

2.1 Componentes 21

2.1.1 Teclado 22

2.1.2 Rueda de entrada/salida 22

2.1.3 Rotores 22

2.1.4 Reflector 25

2.1.5 Panel de bombillas 26

2.1.6 Plugboard 27

2.2 Funcionamiento 28

2.2.1 Giro de los rotores 30

2.3 Código secuencial 31

2.3.1 Resultados de ejecución 34

2.3.1.1 Fichero a encriptar/desencriptar 34

2.3.1.3 Resultados de ejecución 34

2.4 Código optimizado 35

2.4.1 Matriz Encriptador 35

2.4.1.1 Caso A 36

2.4.1.2 Caso B 37

2.4.1.3 Caso C 37

2.4.2 Matrices Camino y Ruta 36

2.4.3 Acceso a Encriptador 36

2.4.4 Tiempos y análisis 37

2.5 Código cuda 37

2.5.1 Entorno de trabajo 38

2.5.1.1 Fichero a encriptar/desencriptar 38

2.5.1.2 Hardware para la ejecución 39

2.5.2 Objetivos de una ejecución en cuda 39

2.5.3 Paralelizar matriz Encriptador 39

2.5.3.1 Envio de información al device

2.5.3.2 Distribución del trabajo 40

2.5.3.3 Kernel 43

6

2.5.3.4 Kernel con shared memory

2.5.3.5 MultiGPU + shared memory 48

2.5.4 Paralelizar el acceso a Encriptador 49

2.5.4.1 Envio de información al device

2.5.4.2 Distribución del trabajo 50

2.5.4.3 Kernel 52

2.5.4.4 MultiGPU 54

2.6 Resultado de ejecución final 55

3. Máquina Bombe 55

3.1 Complejidad de la Enigma 56

3.2 Solución teórica 58

3.3 Componentes de la Bombe 60

3.4 Puesta a punto de la Bombe 62

3.5 Funcionamiento 66

3.5.1 Parada de la Bombe 67

3.6 Código secuencial 71

3.6.1 Formato de salida

3.6.2 Fichero encriptado y crib 72

3.6.3 Resultados de ejecución 72

3.7 Código cuda 73

3.7.1 Envío de información al device 74

3.7.2 Distribución del trabajo 74

3.7.2.1 128 threads por bloque 74

3.7.2.2 256 threads por bloque 75

3.7.2.3 512 threads por bloque 75

3.7.2.4 1024 threads por bloque 75

3.7.3 Kernel 76

3.7.3.1 Resultados de ejecución 77

3.7.4 Kernel con shared memory 79

3.7.4.1 Resultados de ejecución 80

3.7.5 MultiGPU + shared memory 80

3.7.5.1 Envío de información a los devices 81

3.7.5.2 Resultados de ejecución 81

3.8 Resultado de ejecución final 82

4. Máquina check 82

4.1 Combinaciones restantes 82

4.1.1 Completar el plugboard 83

4.1.2 Posición inicial de los rotores 84

7

4.2 Máquina check histórica 84

4.3 Nuestra máquina check 85

4.4 Código secuencial 88

4.4.1 Formato de salida 88

4.4.2 Resultados de ejecución 88

4.5 Código cuda 89

4.5.1 Kernel con shared memory 89

4.5.1.1 Resultados de ejecución 89

4.5.2 MultiGPU + shared memory 90

4.5.2.1 Resultados de ejecución 90

4.6 Resultado de ejecución final 91

5. Bombe + check con fuerza bruta 91

5.1 Resultados de ejecución 92

6. Informe de GEP 92

6.1 Introducción 92

6.1.1 Identificación del problema 92

6.1.2 Actores implicados 93

6.2 Justificación 93

6.3 Alcance 94

6.3.1 Objetivo principal 94

6.3.2 Sub Objetivos 94

6.3.3 Obstáculos y riesgos 94

6.4 Metodología 95

6.4.1 Cómo se desarrollará 95

6.4.2 Con qué medios se desarrollará 96

6.5 Descripción de las tareas 96

6.5.1 Primera parte del proyecto (P1) 97

6.5.2 Segunda parte del proyecto (P2) 99

6.5.3 Tercera parte del proyecto (P3) 102

6.5.4 Resumen de las tareas 102

6.6 Estimaciones y Gantt 103

6.7 Gestión del riesgo: planes alternativos y obstáculos 104

6.8 Gestión Económica 104

6.8.1 Costes de personal (CPA) 104

6.8.2 Costes genéricos (CG) 106

6.8.2.1 Amortizaciones 106

6.8.2.2 Consumo eléctrico 107

6.8.2.3 Factura de internet 108

8

6.8.2.4 Total costes genéricos 108

6.8.3 Contingencias 109

6.8.4 Imprevistos 109

6.8.5 Coste total del proyecto 109

6.8.6 Control de gestión 110

6.9 Informe de Sostenibilidad 110

6.9.1 Fita inicial 111

6.9.1.1 Autoevaluación 111

6.9.1.2 Dimensión Económica 111

6.9.1.3 Dimensión Ambiental 111

6.9.1.4 Dimensión Social 112

6.9.2 Fita final 112

6.9.2.1 Desarrollo del proyecto 112

6.9.2.2 Vida útil 114

7. Conclusiones y líneas abiertas 114

8. Referencias 115

Índice de Figuras

Figura 1. Alfabeto español en una tabla Atbash[2] 18

Figura 2. Escítala espartana[5] 19

Figura 3. Discos del cifrado de Alberti[9] 20

Figura 4. Estado inicial de los discos[9] 20

Figura 5. Encriptado de giro a giro mediante introducción de carácter nulo[10] 21

Figura 6. Nuevo estado de los discos después de un giro[9] 21

Figura 7. Encriptación final mediante introducción de carácter nulo[10] 21

Figura 8. Estado inicial de los discos[9] 22

Figura 9. Encriptado de giro a giro mediante eliminación[10] 22

Figura 10. Nuevo estado de los discos[9] 22

Figura 11. Encriptación final mediante eliminación[10] 22

Figura 12. Ejemplo de Tabula Recta[11] 25

Figura 13. Modelado 3D de una rueda de entrada/salida[14] 26

Figura 14. Cara de entrada del rotor III[15] 26

Figura 15. Composición completa de un rotor[14] 27

Figura 16. Interconexionado de cada rotor[14] 28

Figura 17. Muescas de cada rotor[14] 29

Figura 18. Modelado 3D del reflector[16]

9

Figura 19. Modelado 3D del interconexionado 29

del reflector[16] 29

Figura 20. Interconexionado de los dos reflectores[17] 30

Figura 21. Vista frontal (plugboard) de una máquina Enigma[12] 31

Figura 22. Ejemplo de las configuraciones iniciales de todo un mes[18] 31

Figura 23. Estado inicial de la Enigma mediante un simulador 32

Figura 24. Estado de la primera iteración de la Enigma mediante un simulador 34

Figura 24. Código del interconexionado de ida de los rotores 35

Figura 25. Código del interconexionado de vuelta de los rotores 35

Figura 26. Código del interconexionado de los dos reflectores 35

Figura 28. Datos de la configuración inicial de la Enigma 36

Figura 29. Comprobación de giro de cada rotor 38

Figura 30. Casos iniciales de la Enigma 43

Figura 31. Características de una Tesla K40c 43

Figura 32. Características del hardware de la versión 3.5 44

Figura 33. Asignación de memoria y transferencia de datos entre GPU-CPU

Figura 34. Posición Encriptador mediante identificador del thread de un bloque 46

Figura 35. Nvprof con métricas de memoria para ejecución 256 th/bl 49

Figura 36. Inicialización de la shared memory 49

Figura 37. Escrituras en la shared memory dependiendo del id tel thread 49

Figura 38. Nvprof con métricas de memoria para ejecución 512 th/bl con shared memory 50

Figura 39. Nvprof con métricas de shared memory para ejecución 512 th/bl 52

Figura 40. Asignación no paginada de memoria, pinned memory 52

Figura 41. Transferencias asíncronas de datos entre GPU-CPU 53

Figura 42. Cálculo del primer elemento a calcular para cada GPU 54

Figura 43. Asignación de memoria y transferencia de datos entre GPU-CPU 56

Figura 44. Kernel de acceso a Encriptador para el Caso B 56

Figura 45. Nvprof con métricas de memoria para ejecución 128 th/bl 58

Figura 46. Asignación de memoria no paginada, pinned memory 59

Figura 47. Transferencia de información entre GPU-CPU 59

Figura 48. Primer elemento a calcular por device. Casos A y B 59

Figura 49. Primer elemento a calcular por device. Caso C 62

Figura 50. Posicionamiento del crib respecto al texto encriptado[20] 63

Figura 51. Desplazamiento del crib una posición[20] 63

Figura 52. Desplazamiento del crib hasta no encontrar letras repetidas[20] 64

Figura 53. Dibujo del panel frontal de la Bombe[22] 65

Figura 54. Posicionamiento del crib respecto al texto encriptado para un alfabeto
reducido[23] 65

Figura 55. Conexionado en diagonal de la Bombe[23] 66

10

Figura 55. Posición inicial de cada Enigma respecto a la posición en el texto[23] 68

Figura 54. Posicionamiento del crib respecto al texto encriptado para un alfabeto
reducido[23] 68

Figura 57. Muestra de contradicciones[24] 69

Figura 58. Interconexionado de la primera Enigma[24] 70

Figura 59. Interconexionado de la tercera Enigma[24] 71

Figura 60. Muestra de no encontrar contradicciones[24] 73

Figura 61. Código del cuerpo de la Bombe 74

Figura 62. Código del cuerpo real de la Bombe 74

Figura 63. Sentencia que simula inyección de voltaje en la hipótesis 75

Figura 64. Código que simula la detección de voltaje en el registro 75

Figura 65. Código que comprueba que todos los grupos tienen como máximo 1 cable con
voltaje 76

Figura 66. Resultado de todas las paradas de la Bombe sin contradicciones 78

Figura 67. Asignación de memoria en el device y transferencia de información entre
GPU-CPU 80

Figura 68. Código de la posición a ejecutar por el thread 80

Figura 69. Código que valida si ha habido contradicción o no 81

Figura 70. Nvprof con métricas de memoria para ejecución 128 th/bl 83

Figura 71. Inicialización de la shared memory 83

Figura 72. Escrituras en la shared memory dependiendo del id del thread 84

Figura 73. Nvprof con métricas de shared memory para la ejecución de 128 th/bl 85

Figura 74. Asignación no paginada de memoria, pinned memory 86

Figura 75. Transferencia asíncronas de datos entre GPU-CPU 88

Figura 76. Output reducido de la Bombe 91

Figura 77. Código para calcular el número de parejas del plugboard 91

Figura 78. Bucle del código para generar las combinaciones restantes 92

Figura 79. Código que contabiliza en número de aparición de “QUE” 92

Figura 80. Código que mira si se llega al límite de “QUE” 93

Figura 81. Output de la máquina Check 108

Figura 82. Diagrama de Gantt 120

Índice de tablas

Tabla 1. Tiempos total y de cálculo de la Enigma secuencial 48

Tabla 2. Tiempo total y desglosado de la Enigma paralela 50

Tabla 3. Tiempos cálculo matriz Encriptador según distribución 53

11

Tabla 4. Speedup respecto Enigma paralela según distribución 56

Tabla 5. Tiempos cálculo matriz Encriptador según distribución con shared memory 56

Tabla 6. Speedup respecto Enigma paralela y 256 th/bl de la distribución 512 th/bl con
shared memory 60

Tabla 7. Tiempos cálculo matriz Encriptador según distribución con 2 GPUs 60

Tabla 8. Speedup respecto Enigma paralela y 512 th/bl con shared memory de la distribución
128 th/bl con 2 GPUs 63

Tabla 9. Tiempos acceso Encriptador según distribución 63

Tabla 10. Speedup respecto Enigma paralela según distribución 66

Tabla 11. Tiempos acceso Encriptador según distribución con 2 GPUs 66

Tabla 12. Speedup respecto Enigma paralela y 128 th/bl de la distribució128 th/bl con 2
GPUs 67

Tabla 13. Tiempo total de la Enigma paralela y la ejecución con 2 GPUs 84

Tabla 14. Tiempo de ejecución total y paralelizable de la Bombe

Tabla 15. Tiempo de cuda total y del kernel para cada distribución 88

Tabla 16. Speedup de cuda total respecto al código secuencial 91

Tabla 17. Tiempo de cuda total y del kernel para cada distribución con shared memory 91

Tabla 18. Speedup de cuda total respecto al código secuencial y a la mejor distribución sin
shared memory 93

Tabla 19. Tiempo de cuda total para cada distribución con 2 GPUs 93

Tabla 20. Speedup de cuda total respecto al código secuencial y a la mejor distribución con
shared memory 94

Tabla 21. Comparación de tiempos de cuda total y total entre código secuencial y 2 GPUs 100

Tabla 22. Tiempo de ejecución del check secuencial 101

Tabla 23. Tiempo de ejecución del check secuencial y del check shared memory en cuda 102

Tabla 25. Tiempo de ejecución del check shared memory y del check 2 GPUs en cuda 102

Tabla 26. Speedup total de cuda por parte de 2 GPUs respecto al código secuencial y
paralelizado 103

Tabla 27. Comparación de tiempos finales de las dos versiones del check en cuda respecto a
la secuencial 114

Tabla 28. Resumen de las tareas 118

Tabla 30. Costes genéricos 121

Tabla 31. Costes de imprevistos 122

Tabla 32. Coste total del proyecto 127

12

13

1. Encriptación histórica

1.1 Necesidad de encriptar los mensajes

A lo largo de la historia, el hombre ha estado en continuas confrontaciones con el hombre, y

por lo tanto, ha sentido la necesidad de enviar mensajes a sus aliados sin que estos

mensajes, si eran interceptados por el enemigo, pudieran ser comprensibles.

Hagamos un repaso a cómo ha ido evolucionando la criptografía a lo largo de la historia

hasta el punto histórico donde está ambientado este proyecto.

1.2 Orígenes de la criptografía, criptografía clásica

Se calcula que el cifrado de mensajes se lleva practicando desde hace más de 4.000 años[1]

y que, precisamente, el origen de dicha palabra proviene del griego krypto, que significa

“oculto” y graphos, escribir. Por lo tanto, podría ser traducido como escritura oculta.

En la Biblia, hay referencias al Atbash, utilizado para cifrar mensajes y remontado al año 600

a.C. Este método de encriptado era un tipo de cifrado por sustitución[2], es decir, un método

de cifrado por el que unidades de texto plano son sustituidas con texto cifrado siguiente un

sistema regular[3]; las “unidades” pueden ser de una sola letra (el caso más común), pares

de letras, tríos de letras, mezclas de lo anterior… Por lo que el receptor realiza una

sustitución inversa para descifrar el texto.

En el caso particular del Atbash, esta sustitución se hacía entre la primera letra y la última, la

segunda y la penúltima y así sucesivamente. Un ejemplo de cómo quedaría el alfabeto

español en una tabla Atbash se muestra en la Figura 1.

Figura 1. Alfabeto español en una tabla Atbash[2]

14

Los espartanos también son estudiados por haber utilizado la criptografía para proteger sus

mensajes. Concretamente, utilizaban una técnica conocida como cifrado por transposición.

Esta técnica se basaba en cambiar la posición de las unidades de texto plano siguiendo un

esquema bien definido[4]. Estas unidades de texto podían ser de una sola letra (el caso más

común), pares de letras, tríos de letras, mezclas de lo anterior… Como era el tipo de cifrado

más utilizado en la criptografía clásica, y por lo tanto, al tener que hacer los cálculos por

medios muy básicos, normalmente el algoritmo se basaba en un diseño geométrico o en el

uso de artilugios mecánicos. Este tipo de algoritmo es de clave simétrica, ya que tanto

emisor como receptor necesitan saber dicha clave para realizar su función.

En el caso de los espartanos, utilizaban la escítala, Figura 2, como artilugio mecánico. Era un

bastón de un diámetro determinado que se utilizaba para enroscar en torno a sí, una tira de

cuero u otro material, en el que estaba escrito el mensaje. Al enrollarse alrededor del

bastón, aparecía el mensaje correctamente escrito. Por lo tanto, y como hemos mencionado,

el diámetro exacto de dicha escítala debía de ser conocido por ambos bandos.

Figura 2. Escítala espartana[5]

Por último, de la Antigua Roma procede el tipo de cifrado más conocido, el cifrado César,

atribuido al mismo Julio César. Este tipo de cifrado pertenecía a los tipo de cifrado por

sustitución[6] ya mencionados con la peculiaridad de que una letra en el texto original era

reemplazada por otra letra que se encontraba a un número fijo de posiciones más adelante

en el alfabeto. Por ejemplo, con un desplazamiento de 3, y además, según el historiador

romado Suetonio[1], el más utilizado por Julio César, la A sería sustituida por la D, la B por la

E, etc.

1.3 Criptografía en la Edad Media

En esta época es donde la criptografía tuvo su gran revolución, ya que en el siglo IX, Al-Kindi,

un científico árabe de muchas disciplinas[7], reconocido por ser de los primeros que hicieron

traducir al árabe la obra de Aristóteles y sobretodo, por sentar una de las bases

15

fundamentales para romper mensajes cifrados gracias al estudio del Corán; el análisis de

frecuencia.

Se basaba en analizar patrones en los mensajes cifrados para localizar repeticiones y buscar

la correlación con la probabilidad de que aparezcan determinadas letras en un texto escrito

en un idioma concreto.

Ibn al-Durayhim y Ahmad al-Qalqashandi, dos matemáticos y criptologos árabes, también

profundizaron en los análisis de frecuencia y trabajaron en el desarrollo de códigos más

robustos al aplicar múltiples sustituciones a cada letra de un mensaje (rompiendo así los

patrones que podían hacer que un código se rompiese).

1.4 Criptografía en el Renacimiento

Una de las figuras clave de esta época en esta disciplina fue Leon Battista Alberti[1],

secretario personal de los tres Papas en los Estados Pontificios.

Al igual que los nombrados recientemente, Ibn y Ahmad, Alberti trabajaría en el cifrado

polialfabético y desarrollaría un sistema de codificación mecánico (basado en discos)

conocido como cifrado de Alberti. Está formado por dos discos, uno fijo y otro móvil. El disco

fijo tiene un diámetro que es superior en un noveno al del disco móvil[8], tal y como se

muestra en la Figura 3. El disco fijo está dividido en 24 sectores, repartidos en 20 para todas

las letras del alfabeto ordenadas (excepto la J, U, W e Y, ya que en latín no existían), y los 4

sobrantes con números del 1 al 4 para que luego, estos sectores coincidan con los sectores

del disco móvil. El disco móvil tendrá también 24 sectores, que coincide con el número total

de carácteres con el que consta el alfabeto latino, siendo el vigesimocuarto “et”[8]. En este

caso, los caracteres no están ordenados.

16

Figura 3. Discos del cifrado de Alberti[9]

Tanto emisor como receptor, tienen que compartir un “libro de códigos”[9], el cual, indicará

que letra del disco móvil será utilizada como índice respecto al disco fijo para cada giro del

disco móvil. Vamos a ver a continuación los dos métodos de encriptación que existían.

Partiendo de querer encriptar el siguiente mensaje: LAGVERRASIFARA, que significa la guerra

se hará… tenemos que existe la “R” doble, la cual, traerá problemas por como se

distribuyen los discos. Aquí tenemos dos opciones, eliminarla o introducir un carácter nulo.

Para el método de introducción del carácter nulo, el texto que queremos encriptar quedará

tal que así: LAGVER2RASIFARA, habiendo introducido un número entre las dos “R” como

carácter nulo.

En este caso, tenemos que indicar los cambios de giro para el disco móvil de alguna forma

diferente a un número, puesto que como hemos dicho, este simboliza un carácter nulo. Se

utiliza por ejemplo el carácter “_”, por lo que el texto a encriptar queda:

_LAGVER2RA_SIFARA.

Ahora, mediante el libro de códigos, ambas partes deben de ser conocedoras de los índices.

Por ejemplo, antes del primer giro, situaremos la g con la A, después del primer giro la g con

la Q, y así sucesivamente. Por lo que en este método, el índice es una letra del disco móvil

(la g). A parte, deben de ser conocedoras del orden en que aparecen los carácteres en el

disco móvil. En la Figura 4 vemos el estado inicial para este ejemplo.

Figura 4. Estado inicial de los discos[9]

El primer carácter “_” se encriptará como la letra perteneciente a nuestro índice (“A”), ya

que como dijimos, señala el cambio de giro del disco móvil. Después, a partir de la

disposición de la Figura 4, podemos seguir encriptando hasta encontrar otro “_”, tal y como

se muestra en la Figura 5 y donde, se encriptará con la siguiente letra para nuestro índice

(“Q), tal y como está en el libro de códigos.

17

Figura 5. Encriptado de giro a giro mediante introducción de carácter nulo[10]

Una vez en este punto, se hará el giro en el disco móvil, haciendo coincidir la “Q” con la “g”,

tal como vemos en la Figura 6, y podremos seguir encriptando con el resultado final de la

Figura 7.

Figura 6. Nuevo estado de los discos después de un giro[9]

Figura 7. Encriptación final mediante introducción de carácter nulo[10]

Cabe destacar que tanto la “A” como la “Q” que salen en la encriptación serán ignoradas, ya

que se sabe que es solo el indicador de un giro.

Para el segundo método, el de eliminación de la letra “R” repetida, indicaremos con un

número cuando hay un giro del disco móvil, por ejemplo con el 3: LAGVERA3SIFARA.

En este método, el índice ya no es una letra del disco móvil, sino una letra del disco fijo. Por

ejemplo, vamos a ubicar una posición inicial en que a la letra “A”, le pertenece la letra “m”,

tal y como vemos en la Figura 8.

Figura 8. Estado inicial de los discos[9]

18

A partir de aquí, podemos empezar a encriptar hasta llegar al número, Figura 9. Una vez

llegados a este punto, situaremos la letra que corresponde al número (3 y por lo tanto, “s”) a

nuestro índice, que es la “A”, Figura 10.

Figura 9. Encriptado de giro a giro mediante eliminación[10]

Figura 10. Nuevo estado de los discos[9]

Y ya solo quedará encriptar lo que falta de texto, Figura 11.

Figura 11. Encriptación final mediante eliminación[10]

Por lo tanto, el método de cifrado de Alberti presenta una clara ventaja: no es posible

atacarlo con el análisis de frecuencias comentado anteriormente. Además, tiene un extra en

la seguridad ya que para poder desencriptar un mensaje el receptor necesita de un disco

exactamente igual al que sirvió para crear el cifrado. Esto también es un problema, ya que si

alguien no intencional posee de un disco igual, descifrará el mensaje con facilidad.

Por último, mencionar que el cifrado de Alberti es el primero que utiliza un cifrado

polialfabético. Esto quiere decir que a lo largo del mensaje se cambia de alfabeto, como ya

hemos visto con los giros del disco móvil. Esta idea, será la explotada por los siguientes tipos

de cifrado e incluso, por el cifrado que se analiza en este proyecto.

En esta época también tenemos el Manuscrito de Voynich, conocido como “el gran reto de

los descifradores de códigos”. Aún no se ha podido descifrar[1].

19

En el siglo XVI, Francia vería nacer a otra de las figuras claves de la criptografía, Blaise de

Vigenere,, que en 1586 publicaría el libro Traité des chiffres où secrètes manières

d’escrire[8], en el que expone su nuevo método de cifrado, que está basado en la cifra de

César y utiliza ideas de Alberti.

La idea principal de este método es cifrar mediante el cifrado de César pero con un

desplazamiento arbitrario[8], y no fijo como lo hacía el propio César. Es decir, cifrar la

primera letra a desplazamiento 3, la segunda a desplazamiento 7… Este método resiste al

análisis de frecuencias, pues cada letra se codifica de muchas formas distintas. Pero claro, si

cambiamos arbitrariamente la cifra César, ni nosotros mismos vamos a ser capaces de

descifrarla. Para ello, Vigenère utiliza el concepto de palabra clave.

Una palabra clave, por ejemplo, podría ser VIGENERE. Lo que queremos conseguir con esto

es tener este desplazamiento arbitrario mediante una clave. Si nos fijamos, podemos cifrar

la primera letra de un texto con un alfabeto César que empiece por “V”, la segunda por “I”,

la tercera por “G”, y así hasta llegar a la octava en nuestro caso y volver a empezar por la “V”.

Por lo tanto, cuanto más larga sea la clave, más alfabetos utilizamos y por lo tanto, podemos

variar mucho el resultado del criptograma.

Vamos a ver un ejemplo sencillo de cómo sería poner esta explicación en práctica. Para ello,

nos ayudaremos de una tabula recta, Figura 12. Es una tabla que se le da origen a Tritemius

en su obra Polygraphia. Con esta, podemos ver cualquier tipo de alfabeto a cualquier

desplazamiento. Podemos leerla tanto horizontal como verticalmente, el resultado no varia.

20

Figura 12. Ejemplo de Tabula Recta[11]

Imaginemos que queremos cifrar el mensaje: lacifradevigenere con la clave que

mencionamos anteriormente, VIGENERE y que vamos a leer la tabla horizontalmente.

Primero, buscamos en la primera fila la letra que queremos cifrar (“l”). Como es la primera

letra, tal como dijimos, empezaremos a cifrar con un alfabeto que empiece por “V”, por lo

que iremos a la fila de la “V” en la primera columna y veremos que letra se entrecruza con la

letra “l” de la primera fila. En este caso, la letra “G”.

El siguiente paso sería buscar en la primera fila la siguiente letra: la “a” y buscar donde se

cruza con la fila correspondiente al alfabeto que empiece por “I”. Por lo tanto, la letra

resultante sería: “I”. Y así sucesivamente.

Sin embargo, en el siglo XIX, dos personajes lograron “romper” la cifra de Vigenère. Uno de

ellos fue Charles Babbage y el otro el militar prusiano, Kasiki. Estos, se dieron cuenta de que

realmente sí que se podía aplicar el análisis de frecuencias para desencriptar el mensaje.

Bastaba con darse cuenta de que si se buscaban repeticiones de patrones y el cifrado era lo

suficientemente largo, se podía intuir la longitud de la clave. Si por ejemplo, la clave, como

en el caso anterior que hemos detallado, tiene 8 caracteres, resultará que las letras que

ocupan las posiciones 1,9,17… se habrán cifrado con el mismo alfabeto (recordemos que

mencionamos que cuando se llegaba a la última letra de la clave, volvíamos a la primera).

2. Máquina Enigma

Tal y como hemos visto y comentado, durante la historia de la humanidad, el ser humano ha

necesitado encriptar los mensajes para que fuesen inteligibles para el enemigo. En el año

1918, un ingeniero alemán llamado Arthur Shcerbius[12], junto con su empresa “The

German firm Scherbius & Ritter” patentó las ideas de una máquina de cifrado. Fue

finalmente, en el año 1923 cuando se empezó a comerciar con el diseño final y se le dio el

nombre de Enigma. Su uso principal estaba destinado al mercado y poco a poco fue

cogiendo fuerza en el ámbito diplomático, hasta que finalmente, dio su gran paso y pasó a

ser un elemento imprescindible en las comunicaciones militares, donde la modificaron para

que esta alcanzase una gran complejidad.

2.1 Componentes

21

2.1.1 Teclado

Usado para escribir el texto el cual quería ser encriptado o desencriptado. Contenía 26 letras

del alfabeto con una disposición QWERT[13]. Cuando cualquier letra es pulsada, se envía

una señal eléctrica al siguiente componente.

2.1.2 Rueda de entrada/salida

La rueda de entrada/salida es el componente intermediario entre lo exterior a la máquina y

lo interior. Se encarga de llevar la corriente de una letra que viene del teclado a los rotores y

de llevar la respuesta de los rotores al panel de bombillas.

Está constituida por un cable grueso que contiene 26 cables en el interior, cada uno

representando una letra. En la cara de la rueda, tenemos 26 pines planos metálicos, que son

la terminación de cada cable, Figura 13.

Figura 13. Modelado 3D de una rueda de entrada/salida[14]

2.1.3 Rotores

Los rotores son el corazón de la máquina Enigma. Son los encargados de transformar una

letra de entrada en una de distinta como salida.

Para la primera máquina Enigma (1930), se fabricaron 3 rotores[14], con nombres: I, II y III

(los mantuvieron a lo largo de la trayectoria de la máquina). En 1938, se fabricaron dos

22

unidades adicionales: IV y V. Y por último, en el año 1939, se fabricaron exclusivamente los

rotores VI, VII y VIII para el ejército naval. Para saber con qué rotor se estaba trabajando, el

número de este estaba en la cara de entrada, Figura 14.

Figura 14. Cara de entrada del rotor III[15]

En la Figura 15, se muestra un rotor visto por las dos caras, desmontado y con números para

indicar las distintas partes de este. La cara de la izquierda hace referencia a la salida, y la de

la izquierda a la de entrada (siempre tenemos la rueda 9 a la derecha de la tira alfabética 3).

23

Figura 15. Composición completa de un rotor[14]

1- Anillo rojo que indica qué letra es la muesca, en el caso del rotor de la Figura 15, la letra

“J”.

2- Marca en forma de círculo rojo que nos indica, para cada rotor, cual es la letra “A” de este.

3- Anillo con el alfabeto de la “A” a la “Z”.

4- Pin plano metálico de salida del rotor.

5- Cableado que conecta el pin metálico de entrada de un rotor con el pin plano metálico de

entrada de este.

6- Pin metálico de entrada de un rotor.

7- Muesca que sirve para cambiar la relación que hay entre la entrada que le llega a un rotor

y la entrada real de este. Se introdujo más adelante, no lo cubrimos en este proyecto. Por

este motivo es importante el elemento 2, para ser conocedor de cual es la letra “A” del rotor.

8- Tubo que sujeta los rotores.

9- Rueda utilizada para dar posición inicial a los rotores por parte de los operarios.

10- Rueda en forma de sierra que gracias a una palanca (no perteneciente a los rotores),

hace que estos giren.

El conexionado que se hace mediante cable que acabamos de mencionar (elemento 5), es

fijo para cada rotor, era conocido por todos en la armada alemana y acabó siendo conocido

también por los ingleses. Cómo lo obtuvieron se desconoce. En la Figura 16 se ve la salida

que producía cada rotor con la entrada de este.

Figura 16. Interconexionado de cada rotor[14]

Por ejemplo, para el rotor II, si tenemos una “A” de entrada, este seguirá sacando una “A” de

salida. Si entra una “B”, sacará una “J”. Si entra una “C”, una “D”, y así sucesivamente.

24

Hemos mencionado el término “muesca” en el elemento 1 de este mismo apartado. La

muesca indica que llegado el rotor a esa posición, el siguiente rotor debe de hacer un giro.

Estas muescas, también eran fijas para cada rotor y también conocidas, Figura 17.

Figura 17. Muescas de cada rotor[14]

Como vemos, los rotores VI, VII y VIII se les introdujo una segunda muesca, aumentando la

complejidad considerablemente, ya que los rotores giraban con frecuencia x2, y por lo tanto,

era más complicado imaginarse el recorrido de estos.

2.1.4 Reflector

El reflector es el componente encargado de crear un camino de vuelta a la señal eléctrica

que le viene del rotor que está conectado a él. Con esto, conseguimos que una letra de

entrada nunca de la misma como salida, ya que el recorrido que va a llevar la corriente de

vuelta va a ser distinto que el de ida.

Es una rueda constituida por 26 pines metálicos, tal y como se ve en la Figura 18, que toman

contacto con los del rotor más cercano. Cada pin del reflector, para crear un camino de

vuelta distinto, está interconectado mediante cables con otro pin, Figura 19.

25

Figura 18. Modelado 3D del reflector[16] Figura 19. Modelado 3D del interconexionado

del reflector[16]

Existían dos reflectores distintos, llamados reflector B y reflector C, cada uno con conexiones

distintas. Al igual que los rotores, estas conexiones eran conocidas y siempre las mismas[17],

Figura 20.

Figura 20. Interconexionado de los dos reflectores[17]

2.1.5 Panel de bombillas

Consistía en un total de 26 bombillas, con la misma distribución del layout del teclado

(QWER) y que cada una de ellas tenía impresa una letra. La bombilla iluminada era la letra

encriptada/desencriptada que se había pulsado en el teclado.

2.1.6 Plugboard

Fue el elemento innovador creado por la milicia nazi para aumentarle el grado de

complejidad que tenía la máquina enormemente[12], luego veremos esto.

26

Consistía en un panel con dos agujeros verticales por carácter del abecedario, por lo tanto,

52 agujeros totales, tal y como se muestra en la Figura 21. Uno de los agujeros servía como

entrada a la máquina, y el otro como salida. Cuando la corriente circulaba por el agujero de

entrada, significaba que esa letra era la que se había presionado en el teclado.

Figura 21. Vista frontal (plugboard) de una máquina Enigma[12]

Para ello, se utilizaban unos cables simétricos (ambas terminaciones eran iguales), cada una

de ellas con dos pines que servían para conectar dos letras, los dos agujeros de la entrada y

los dos agujeros de la salida.

Un ejemplo lo tenemos también en la Figura 13, donde un cable conecta la letra A con la J y

viceversa. El pin de entrada de la terminación “A”, será conectado con el pin de entrada de la

terminación “J”, haciendo que si se pulsa la tecla “A”, el corriente entrará a la máquina como

si se hubiera presionado la tecla “J” y viceversa. Por otro lado, el pin de salida de la

terminación “A”, será conectado con el pin de salida de la terminación “J”, y el

comportamiento será el mismo que el descrito con la entrada.

2.2 Funcionamiento

Para explicar un ejemplo de iteración de la Enigma, vamos a proponer una configuración

inicial y vamos a ir intercalando la explicación electromecánica con la ayuda de un

simulador[13] de la máquina que podemos encontrar por Internet. En aquella época, los

operarios tenían una hoja con todas las configuraciones de la Enigma para todo el mes,

Figura 22.

27

Figura 22. Ejemplo de las configuraciones iniciales de todo un mes[18]

Para nuestro caso, el rotor lento será el IV, el del medio el II y el rápido el I. La posición inicial

del rotor lento será la “B”, la del medio la “T” y la del rápido la “H”. El reflector será el B. En

la Figura 23 podemos observar esta configuración. No conectamos ninguna pareja del

plugboard. La líneas rojas hacen referencia a la letra que es la muesca en cada rotor.

Figura 23. Estado inicial de la Enigma mediante un simulador

28

Como hemos comentado, la Enigma era un dispositivo electromecánico. Se empezaba

pulsando en el teclado la letra que quisiéramos encriptar/desencriptar (la “R” en nuestro

ejemplo) y acto seguido, había un giro en los rotores (solo se mueve el rotor rápido, ya que

ninguno está en su muesca), Figura 24.

Figura 24. Estado de la primera iteración de la Enigma mediante un simulador

La señal eléctrica que se generaba (línea azul) desde el teclado viajaba al plugboard. Si no

había cable en el plugboard la señal seguía el cable de la letra correspondiente con el

teclado (como se ve en el ejemplo, la “R” será “R”). Si por el contrario, si había cable creando

una pareja, la señal iba al nuevo clave.

Esta señal llegaba a la rueda de entrada/salida (referenciada como “ETW” en el ejemplo) que

hacía contacto con el primer rotor que tenía pegado a ella (el I). De los 26 pines metálicos

que tenía esta rueda, solo tenía señal el que venía del cable del plugboard. Por lo tanto, este

pin (en nuestro ejemplo es nuestra “R”) hacía contacto con el pin del rotor rápido (la “Z”). Si

nos fijamos en la Figura 24, vemos que era la letra “Y”, pero hubo un giro en este rotor nada

más presionar el teclado.

Mediante el interconexionado del rotor, la señal viajará hasta el otro extremo donde habrá

un pin metálico que estará tocando con otro pin del siguiente rotor (mismo procedimiento

que acabamos de ver).

Al llegar al último rotor, este tendrá contacto con un pin del reflector, en nuestro ejemplo, la

letra “L” de este. Como vimos, el reflector lo que hacía era generar un camino de vuelta

29

(línea amarilla en nuestro ejemplo) único, por lo que cada letra que le entraba, tenía su

única conexión con una de salida. En nuestro caso, al ser la “L”, esta letra de salida es la “G”.

La señal viajará por los rotores hasta llegar a la rueda de entrada/salida. Esta llevará la señal

al plugboard y depende de si la letra está conectada o no, se iluminará una bombilla u otra.

En nuestro caso, le llega al plugboard una “W” y como no tiene pareja, esta es la letra que se

iluminará en las bombillas (podemos verlo tanto en la zona llamada “LAMPBOARD” como en

“OUTPUTS”.

2.2.1 Giro de los rotores

Cada rotor tiene asociada una palanca que a cada pulsación del teclado esta sube. Para que

un rotor gire, esta palanca tiene que poder empujar uno de los dientes de sierra de dicho

rotor. Si nos fijamos en la Figura 15 del apartado “2.1.3 Rotores”, esta sierra es el elemento

10. La palanca del rotor rápido siempre estará colocada de tal forma que siempre que suba

pueda empujar un diente del rotor, y por lo tanto, hacerlo mover.

Las palancas de los siguientes rotores nunca pueden empezar un diente de sierra de su rotor

correspondiente, debido a que se lo impide el elemento 1 del anterior rotor (su muesca). El

disco de esta muesca está más elevado que los dientes de sierra. Una vez un rotor llega a su

muesca, esta hará que la palanca del siguiente rotor baje de nivel y pueda empujar un diente

de sierra de su rotor.

Para una explicación mucho más detallada y visual, recomiendo ver el vídeo[16], de donde

ya hemos ido sacando imágenes de algún componente de la Enigma. En concreto, la

representación de los giros de los rotores.

2.2.1.1 Doble giro de rotores

Un dato a tener en cuenta, y que si no se entiende el funcionamiento del apartado anterior

“2.2.1 Giro de los rotores” no es lógico, es de que hay ocasiones en que el rotor lento

provoca un giro en el mismo y en el rotor anterior (el del medio). De hecho, eso pasa de la

misma forma con el rotor del medio, haciendo que gire el rápido también, pero como el

rápido gira en cada pulsación de teclado, este efecto queda oculto.

Cuando el rotor del medio llega a su muesca, tal como explicamos en el apartado anterior,

dicha muesca permite a la palanca del rotor lento poder empujar un diente de su sierra para

hacerlo girar. Sin embargo, la palanca también queda nivelada con la muesca del rotor del

medio, empujándola y como esta, está sujeta al rotor del medio, este también se mueve.

30

Un ejemplo visual de este doble giro del rotor del medio puede verse en el vídeo[19], el cual

es una representación de la parte mecánica de los rotores de la Enigma hecha de madera.

2.3 Código secuencial

Con el código secuencial hemos tratado de simular lo más fielmente el funcionamiento de la

máquina Enigma visto previamente.

Como hemos visto anteriormente, el conexionado interno de cada rotor era conocido. Para

lograr esto, hemos creado una matriz con 8 vectores de 26 elementos cada uno, Figura 24.

Los 8 vectores simulan los 8 rotores que se llegaron a crear, aunque en este proyecto sólo

trabajamos con 5, y los 26 carácteres simulan todas las letras del abecedario. Esta matriz

solo nos sirve como el camino de ida.

Figura 24. Código del interconexionado de ida de los rotores

Lo que se quiere conseguir es que para cada posición de cada vector, simulando una letra de

entrada, genere una letra de salida. Por ejemplo, si utilizamos el rotor II y la letra de entrada

es la “C”, se está accediendo al elemento rotor[1][2], y por lo tanto, la salida es “D”.

Recordemos que “A” es la posición 0 y “Z” la 25, como en código ASCII.

Para el camino de vuelta, hacemos una matriz de las mismas dimensiones pero cada

elemento será el inverso que vimos para el camino de ida, Figura 25. Por ejemplo, si

utilizamos el rotor II y la letra de entrada es la “D”, se está accediendo al elemento

rotorV[1][3], la salida es “C” y por lo tanto, lo inverso del ejemplo anterior.

31

Figura 25. Código del interconexionado de vuelta de los rotores

Es importante también tener guardado el reflector, ya que como vimos, también era

conocido, Figura 26. Es una matriz de dos vectores, ya que solo existían dos reflectores, con

26 elementos por vector; simulando las 26 letras del abecedario. El comportamiento es

idéntico a lo visto con los rotores, le llega una entrada mapeada a una posición del vector

correspondiente y el elemento de esa entrada es la letra de salida del reflector.

Figura 26. Código del interconexionado de los dos reflectores

Por último, en cuanto a datos conocidos, tenemos las muescas de cada rotor guardadas en

un vector, Figura 27. El mapeado en cuanto a rotor y posición es el mismo que acabamos de

ver, siendo la posición 0 para el rotor I y la posición 4 para el rotor V.

Figura 27. Código de las muescas de cada rotor

En este punto, necesitamos meternos en el papel del operario que configuraba la máquina

para que trabaje con esa configuración todo el día. Para ello, hemos creado una estructura

de datos donde guarda toda la información necesaria para poner en marcha la máquina,

Figura 28.

32

Figura 28. Datos de la configuración inicial de la Enigma

Una vez tenemos la configuración inicial, esta es pasada a una serie de vectores con los que

el código trabajará a lo largo de la ejecución de este. Estos vectores son:

- Para simular los rotores colocados en ese momento, tenemos unos vectores de 26

carácteres: rFast (rotor de ida rápido), rVFast (rotor de vuelta rápido), rMiddle (rotor

de ida del medio), rVMiddle (rotor de vuelta del medio), rSlow (rotor de ida lento) y

rVSlow (rotor de vuelta lento). Estos son obtenidos mediante las matrices rotor y

rotorV.

- Para simular el reflector se utiliza un vector de 26 caracteres llamado Volta. Se

obtiene con el vector correspondiente de la matriz Reflector.

- Por último, el plugboard es simulado con un vector de 26 carácteres que se obtiene

de la estructura de datos de la configuración inicial; de campo Plg.

Ahora ya solo queda que la Enigma itere para cada entrada que le llega. Lo más importante

del cuerpo de esta es, y para hacerlo lo más fiel posible, hacer por lo menos el giro del rotor

rápido antes de empezar a calcular la salida (ya que este siempre lo hace). Por lo tanto,

tenemos que tener las muescas de los rotores siempre presentes antes de iterar, tal y como

se muestra en la Figura 29.

33

Figura 29. Comprobación de giro de cada rotor

Como vemos, se le da prioridad a mirar la condición de la muesca del rotor del medio. Esto

es, porque si la posición actual del rotor del medio es la misma que su muesca, esto hace

que gire este rotor y además, el rotor lento. Si por el contrario, esto no sucede, y la posición

actual del rotor rápido es igual a su muesca, hará girar solamente al rotor del medio.

Recordemos que pase lo que pase, el rotor rápido siempre gira. Esto lo vimos explicado

mecánicamente en el apartado “2.2.1.1 Doble giro en el rotor del medio”.

A partir de aquí, le entra una letra y se simula el comportamiento de la enigma mediante los

vectores ya vistos (por orden de acceso): Plug, rFast, rMiddle, rSlow, Volta, rVSlow, rVMiddle,

rVFast y por último, Plug otra vez, dándonos la salida correspondiente.

2.3.1 Resultados de ejecución

2.3.1.1 Fichero a encriptar/desencriptar

Para las ejecuciones de este proyecto vamos a usar ficheros de texto que corresponden con

libros completos de distintos autores. Es necesario que estos textos contengan un formato

en particular para que lo que se va a ver más adelante en este proyecto funcione y cobre

sentido; empezarán todos con la palabra “TITLE” seguido de su título. Después vendrá la

palabra “AUTHOR” seguido del nombre y apellido del autor (por este orden).

En particular, vamos a trabajar con un fichero de texto de 235,974 bytes. Este es el libro “Las

Indias Negras” de Julio Verne.

2.3.1.3 Resultados de ejecución

En la Tabla 1 podemos ver el resultado de los tiempos de todo el programa y del trozo de

código que hace referencia al cálculo de la encriptación/desencriptación del texto. Se han

recogido los resultados de 100 ejecuciones del código en el orden de milisegundos.

Total Cálculo

Enigma secuencial Media 927.87 ms 927.35 ms

Tabla 1. Tiempos total y de cálculo de la Enigma secuencial

34

Como podemos ver, el tiempo del programa que hace referencia al cálculo de la

encriptación/desencriptación es del 99.94% del programa, por lo que nos interesa trabajar

sobre esta parte y ver si es paralelizable.

2.4 Código optimizado

La idea principal de este código es la de prepararlo para la ejecución en cuda. Podríamos

transformar el código secuencial visto en el apartado “2.3 Código secuencial” directamente

a cuda, pero haciendo una serie de optimizaciones, vamos a mejorar el resultado de este.

Estas optimizaciones van a ser las que vamos a ver en este apartado: precálculo de la matriz

Encriptador, precálculo de las matrices Camino y Ruta y el acceso a dichas matrices.

2.4.1 Matriz Encriptador

Como sabemos que los tres rotores van a ser los mismos, y en el mismo orden durante toda

la ejecución de la enigma, nos vamos a aprovechar de esto haciendo un precálculo. Este

precálculo se basa en tener almacenados, para cualquier entrada y cualquier posición actual

de la letra de cada rotor, la salida de la enigma.

Para conseguir esto, vamos a tener una matriz de 26x26x26x26, que la vamos a llamar

Encriptador. Estas dimensiones son debidas a que tenemos 26 posiciones posibles para el

rotor lento, 26 posiciones posibles para el del medio, 26 posiciones posibles para el rápido, y

finalmente, 26 letras posibles de entrada para cada posición. Por lo tanto, sean cuales sean

las dimensiones del texto que queremos encriptar/desencriptar, la máquina enigma va a

tener que iterar 456,976 veces.

Esto último es muy importante, ya que es muy probable de que ejecutemos más veces la

máquina enigma de lo necesario solo para tener guardadas todas las combinaciones. Sin

embargo, y tal como he mencionado, el código sirve para explotar la paralelización con cuda.

Veremos los resultados más adelante.

Como vamos a tener que acceder a la matriz Encriptador de forma no secuencial, vamos a

tener también que haber precalculado el recorrido que va a llevar la enigma a partir del

orden de los rotores y su posición inicial. Para ello, tenemos que identificar primero los 3

casos iniciales que existen en la Enigma (los llamamos A, B y C, Figura 30). Esto solo se

ejecuta una vez, al principio junto a la configuración inicial.

35

Figura 30. Casos iniciales de la Enigma

Estos tres casos sirven para identificar cómo se comporta la enigma en los primeros giros de

los rotores, por eso se tienen en cuenta las muescas del rotor rápido y del rotor del medio. A

continuación, vamos a analizar los tres casos para así saber, el número de posiciones que se

recorre en cada uno de ellos y así saber de cuanto debe de ser nuestra estructura de datos

que guarde este recorrido.

2.4.1.1 Caso A

Para el caso A, vamos a seleccionar los siguientes rotores: I (rápido), II (medio), III (lento).

Además, el rotor I va a tener la letra “Q” como posición inicial (su muesca), el rotor II la letra

“F” como posición inicial (siguiente a su muesca) y el rotor III la letra “A” como posición

inicial.

La siguiente posición a la posición inicial AFQ es AGR, ya que al ser “Q” la muesca del rotor I,

hace que gire el rotor II a la siguiente posición. A partir de aquí, el rotor II va a girar una

posición cada 26 posiciones del rotor I hasta llegar a la posición AER, donde “E” es la muesca

del rotor II. Hasta aquí, llevamos 1 + 1 + 26 x 24 (626) posiciones recorridas.

La siguiente posición a AER es BFS, ya que al ser “E” la muesca del rotor II, hace que gire este

y el rotor III. Deberán pasar 25 posiciones para llegar a la posición BGR. Una vez aquí, 26

posiciones para llegar a la posición BHR y finalmente, se repetirá esto último hasta llegar a la

posición BER. Nótese el bucle aquí, ya que ahora estamos en BER y antes en AER, por lo que

se repetirá el patrón. Por lo tanto, hasta llegar a ZER recorreremos: (1 + 25 + 24 x 26) x 25

(16,250) posiciones.

La siguiente posición a ZER es AFS. Nosotros ya visitamos al principio la posición AFQ, pero

no las demás que hay entre AFS y esta última. Por lo tanto, tendremos que recorrer 24

posiciones más.

36

En total, habremos recorrido 626 + 16,250 + 24 (16,900) posiciones para llegar a la inicial.

2.4.1.2 Caso B

El caso B va a tener la misma configuración de rotores con la diferencia, de que el rotor I va a

tener la letra “R” como posición inicial (siguiente a su muesca), el rotor II va a tener la letra

“F” como posición inicial (siguiente a su muesca) y el rotor III va a tener la letra “A” como

posición inicial.

La siguiente posición no va a producir ningún giro del rotor II, por lo que no será hasta las 26

posiciones siguientes cuando suceda; AGR. Esto va a repetirse hasta que lleguemos a la

posición AER, donde “E” es la muesca del rotor II. Por lo tanto, hasta aquí llevaremos 1 + 25 x

26 (651) posiciones.

La siguiente posición a AER es BFS, ya que al ser “E” la muesca del rotor II, hace que gire este

y el rotor III. Podemos notar que a partir de aquí, tenemos la misma situación que en el

“Caso A”. Por lo tanto, para llegar a la posición ZER será lo mismo: 16,250 posiciones. Sin

embargo, ya no necesitaremos recorrer más posiciones, dado que, a diferencia del “Caso A”,

no hemos hecho un giro del rotor II en la primera posición y por lo tanto, no nos quedan

posiciones que recorrer.

El total de posiciones recorridas para este caso es de 651 + 16,250 (16,901) hasta llegar a la

posición inicial.

2.4.1.3 Caso C

Misma configuración de rotores salvo que el rotor I tendrá la letra “Q” como posición inicial

(su muesca), el rotor II tendrá la letra “E” como posición inicial (su muesca) y el rotor II

tendrá la letra “A” como posición inicial.

La siguiente posición a la posición inicial AEQ generará un giro de los tres rotores, debido a

que la letra “E” es la muesca del rotor II, quedando en la posición BFR. Para el siguiente giro

del rotor II, posición BGR, tendrán que pasar 26 posiciones y así sucesivamente hasta que el

rotor III gire ya que se ha alcanzado la letra “E” en el rotor II (BER). Por lo tanto, hasta este

punto habremos recorrido 1 + 1 + 25 x 26 (652 posiciones).

La siguiente posición a BER es CFS, ya que la letra “E” es la muesca del rotor II, por lo tanto,

los tres rotores giran. Para llegar a CGR deberán pasar 25 posiciones. Una vez aquí, pasarán

26 posiciones hasta el próximo giro del rotor II, en la posición CHR y esto se repetirá hasta la

37

posición anterior al próximo giro del rotor III, CER. Y a partir de aquí, se repetirá el bucle al

igual que teníamos con la posición BER. Por lo tanto, recorreremos (1 + 25 + 24 x 26) x 25

(16,250) posiciones.

En total, habremos recorrido 652 + 16,250 (16,902) posiciones hasta llegar a la posición

inicial.

2.4.2 Matrices Camino y Ruta

Recapitulando, el Caso A ha recorrido 16,900 posiciones, el Caso B 16,901 y el Caso C

16,902.

Por lo tanto, vamos a crear una matriz Ruta con 16,900 vectores con 3 elementos cada uno.

Esto simulará para cada una de las 16,900 posiciones en la ruta actual, qué posiciones tienen

los tres rotores.

Crearemos también una matriz Camino, de 2 vectores con 3 elementos cada uno. Esto es,

porque los casos B y C se comportan distinto al principio que el Caso A, debido a que

empiezan con un giro en el rotor del medio. El Caso B llenará solo un vector, y el Caso C los

2.

2.4.3 Acceso a Encriptador

Si por ejemplo, se quisiera acceder a la iteración 123 de la ejecución de la enigma, bastaría

mirar primero de todo el caso en el que estamos y luego acceder a la posición de la matriz

Ruta correspondiente. Por ejemplo, si es el Caso C, para tener la posición del rotor I (PF),

accederíamos a Ruta[121][0], para la posición del rotor II (PM), a Ruta[121][1] y para la

posición del rotor III (PS), a Ruta[121][2]. Recordemos que accedemos al vector 121 de Ruta

debido a que tenemos 2 extras almacenados en Camino ya que estamos en el Caso C.

Lo siguiente será obtener la letra de entrada que queremos encriptar/desencriptar y

transformarla en un entero (alfb).

Por último, accederemos a la matriz Encriptador[PS][PM][PF][alfb] que nos dará el resultado

previamente guardado de la encriptación/desencriptación.

38

2.4.4 Tiempos y análisis

Para los tiempos que se van a mostrar a continuación, se ha utilizado el mismo texto a

encriptar/desencriptar, el mismo hardware y el mismo número de ejecuciones del programa

que en el apartado “2.3.1.3 Tiempos y análisis”. En la Tabla 2 pueden verse los resultados en

el orden de milisegundos.

Total
Secuencial

Total
Optimizado

Ruta y
Camino

Encriptador Acceso a
Encriptador

Enigma Media 927.87 903.05 0.104 17.083 885.38

Tabla 2. Tiempo total y desglosado de la Enigma paralela

Como vemos, obtenemos una pequeña mejora con este código respecto al código secuencial

(un speedup del 1.03 de media). Esto es debido a que, a pesar de realizar cálculos extra para

guardar resultados en las matrices Ruta, Camino y Encriptador, tanto a la matriz Ruta como a

la matriz Camino vamos a accederlas en posiciones contiguas de memoria, por lo que vamos

a ganar tiempo. Además, nos vamos a aprovechar de los resultados de la Enigma

previamente calculados al acceder a la matriz Encriptador.

A la matriz Encriptador nunca vamos a acceder en posiciones contiguas de memoria ya que

accedemos por posiciones de rotores, y para cada posición, tenemos 26 inputs únicos

distintos de entrada (a-z).

2.5 Código cuda

Como dijimos en el apartado anterior, la idea de crear un código optimizado era para que

podamos transformar en un código cuda y que cada thread trabaje la

encriptación/desencriptación de una letra del texto. Para ello, era necesario que cada uno

de estos threads, pudiera acceder a la posición con la que quería trabajar.

Este código solo puede paralelizar dos subapartados que hemos visto en el apartado “2.4

Código optimizado”. Se puede paralelizar el subapartado “2.4.1 Matriz Encriptador”, ya que

como se calculan todas las enigmas posibles no hay dependencias, y el subapartado “2.4.3

Acceso a Encriptador”, ya que solo accedemos a la matriz Encriptador de forma masiva. El

subapartado “2.4.2 Matrices Camino y Ruta” no se puede paralelizar, ya que la ejecución de

una ruta de los rotores es secuencial, y una posición actual depende de la anterior.

39

2.5.1 Entorno de trabajo

2.5.1.1 Fichero a encriptar/desencriptar

Mismo libro que en las ejecuciones para los apartados “2.3 Código secuencial” y “2.4 Código

optimizado”.

2.5.1.2 Hardware para la ejecución

La GPU con la que vamos a ejecutar nuestro programa en cuda es una Tesla K40c, con las

características que se pueden observar en la Figura 31. Estas características van a ser

importantes para así poder pensar en un mejor aprovechamiento del trabajo de los threads

para la ejecución de nuestro código.

Figura 31. Características de una Tesla K40c

Sin embargo, nos faltan aún unos datos muy importantes que hacen referencia a las

características que soporta el hardware de la GPU según de la familia que sea la GPU en

cuestión. En nuestro caso, en la Figura 31, podemos ver que es la versión 3.5, y sus

características son las mostradas en la Figura 32:

40

Figura 32. Características del hardware de la versión 3.5

2.5.2 Objetivos de una ejecución en cuda

Los 3 principales objetivos que hay detrás de conseguir unos buenos resultados con una

ejecución en cuda es que, mediante el código consigamos:

- Una buena distribución del trabajo para los threads. Esto significa, que si el trabajo

total a hacer lo permite, estén todos los threads de la GPU trabajando al mismo

tiempo, sin dejar threads inactivos.

- No haya divergencia en el trabajo de los threads. Esto significa, que todos los threads

ejecuten las mismas instrucciones (ausencia de sentencias if) pero con datos

distintos.

- Los accesos a memoria sean a posiciones contiguas y alineadas. Así podemos

conseguir que varias peticiones a memoria de distintos threads de un mismo warp

sean realizadas como una única transacción.

2.5.3 Paralelizar matriz Encriptador

2.5.3.1 Envio de información al device

La enigma necesita de varios datos para poder iterar, los hemos visto anteriormente. Los

vectores: Plug, rFast, rMiddle, RSlow, rVFast, rVMiddle, rVSlow y Volta. Estos vectores, hay

que enviarlos al device para que pueda calcular, Figura 33. Se deberá enviar también donde

almacenar los resultados del kernel, por lo que si queremos que sea la matriz Encriptador,

deberemos de enviar 264 para almacenar (recordemos Encriptador[26][26][26][26]).

41

Figura 33. Asignación de memoria y transferencia de datos entre GPU-CPU

2.5.3.2 Distribución del trabajo

De todas las combinaciones que hemos probado, las tres siguientes son las que mejores

resultados nos han proporcionado. Para la explicación, nos basaremos en que la matriz

Encriptador, tal como ya mencionamos, ocupa 264, es decir, 456,976 caracteres.

2.5.3.2.1 128 threads por bloque

Para saber el número de bloques que necesitamos que contengan 128 threads, hemos de

hacer el siguiente cálculo: (456,976 + 127) / 128. Siempre sumamos un el número de threads

menos uno para que no nos quedemos cortos en el número de bloques. El resultado de esta

operación son 3,571 bloques de 128 threads.

Si observamos la Figura 32 en el apartado “2.5.1.2 Hardware para la ejecución”, vemos que

podemos utilizar como máximo 16 bloques por SM. Además, si nos fijamos en la Figura 31

de ese mismo apartado, veremos que el número máximo de threads por SM es de 2048. Por

lo que, en este caso, podemos utilizar los 16 bloques por SM (16 x 128 = 2048 threads).

Si volvemos a fijarnos en la Figura 31, veremos que tenemos un total de 15 SMs, por lo que

vamos a tener trabajando al mismo tiempo 240 bloques (16 x 15). Y por lo tanto, van a estar

trabajando 30,720 threads paralelamente (240 x 128). Hemos conseguido utilizar el número

42

total de threads, ya que la GPU tenía 2048 threads por SM y 15 SMs en total (2048 x 15 =

30,720).

2.5.3.2.2 256 threads por bloque

El procedimiento aquí es idéntico al del apartado anterior. El número de bloques es 1,786

((456,976 + 255) / 256) y por lo tanto, 8 bloques por SM (8 x 256 = 2048, que es el máximo

de threads que se soporta en un SM).

Por lo tanto, si tenemos 15 SMs, tendremos 120 bloques de 256 threads trabajando al

mismo tiempo, es decir, los 30,720 threads que también conseguimos antes (120 x 256).

2.5.3.2.3 512 threads por bloque

El número de bloques es (456,976 + 511) / 512, por lo que 893 bloques totales de 512

threads. Así que como máximo, vamos a poder utilizar 4 bloques por SM (4 x 512 = 2048

threads). Por lo que 60 bloques totales trabajando a la vez (4 x 15). Es decir, 30,720 threads

trabajando paralelamente (60 x 512).

2.5.3.3 Kernel

Una vez en el kernel, cada thread debe saber que posición es la que calcula, Figura 34. Con

la variable pos, obtenemos la posición del thread respecto a todo el device. Con esta,

podemos hacer referencia a todos las posiciones que necesitamos con la misma

nomenclatura que vimos en el apartado “2.4.5 Acceso a Encriptador” con la excepción de

que aquí he llamado “elemento” a la letra que se quiere encriptar/desencriptar en lugar de

“alfb”, como mencioné previamente en dicho apartado.

Figura 34. Posición Encriptador mediante identificador del thread de un bloque

Por ejemplo, siendo “n” 26*26 y “N” 26*26*26, si “pos” es 1730, significa que vamos a estar

calculando el elemento Encriptador[0][2][14][14], es decir,

Encriptador[PS][PM][PF][elemento]. Cada iteración de la Enigma necesita estas variables

para saber qué posición tiene cada rotor.

43

Antes de que el thread ejecute una iteración de la Enigma, se necesita comprobar que “pos”

sea menor de los 264 elementos que tiene el vector (que simula ser la matriz Encriptador)

que enviamos al device.

Por último, una vez iterada la Enigma y adquirido el resultado, se va a guardar en la posición

“pos” del vector que se envió al device.

2.5.3.3.1 Resultados de ejecución

El tiempo de ejecución para el precálculo de la matriz Encriptador se muestra en la Tabla 3.

El tiempo “Total” del precálculo de la matriz Encriptador es el tiempo que se obtiene del

kernel + las transmisiones de información entre GPU y CPU de forma bidireccional + la

puesta en punto de dichas funciones. Los tiempos son en ms y se han cogido la muestra de

100 ejecuciones del código.

Optimizado 128 th/bl 256 th/bl 512 th/bl

Encriptador Total Media 17.08 0.551 0.539 0.561

Kernel Media No aplica 0.126 0.125 0.126

Tabla 3. Tiempos cálculo matriz Encriptador según distribución

Como vemos, conseguimos los siguientes speedup, Tabla 4, respecto al código optimizado:

128 th//bl 256 th/bl 512 th/bl

Encriptador
(Total)

Speedup 31.01 31.69 30.04

Tabla 4. Speedup respecto Enigma paralela según distribución

Si nos basamos en los tres puntos vistos en el apartado “2.5.2 Objetivos de una ejecución

en cuda”, dos de ellos los cumplimos: hay buena distribución de los threads tal y como

hemos visto en el apartado “2.5.3.2 Distribución del trabajo” y todos ellos ejecutan las

mismas instrucciones. Sin embargo, el cómo se utiliza la memoria en este código no es la

forma más óptima, y es precisamente esta parte la que penaliza el rendimiento de este

programa. Para mostrar esto, vamos a sacar el uso de la memória para la ejecución de

256threads/bloque con el profiling de cuda “nvprof”, Figura 35. Escojo la distribución de 256

threads/bloque ya que es la que menos tiempo de ejecución total y de kernel tiene (aunque

solo analizemos el kernel).

44

Figura 35. Nvprof con métricas de memoria para ejecución 256 th/bl

Si nos fijamos en el bloque de las lecturas, vemos que se nos indica que la eficiencia de las

lecturas es de un 76.66%, es decir, se nos entregan más datos de los que necesitamos. Esto

es debido a que las peticiones se hacen a nivel de warp, es decir, a nivel de 32 threads. Sin

embargo, al ser vectores de 26 posiciones, hay threads del mismo warp que quieren acceder

a las mismas posiciones.

Si nos fijamos en los 28.376 GB/s (ancho de banda efectivo), vemos que si el kernel ha

tardado en ejecutarse 0.103 ms (menos de lo indicado en la Tabla 3, ya que este es el tiempo

efectivo del kernel) tenemos que se han querido leer 3,138,255 bytes en total. Si tenemos

128,529 peticiones (ya que hay 1 transacción por petición), tenemos que se quieren leer 24

bytes por petición (no llega a los 32 bytes que se nos ofrece por petición). Incluso vemos que

hay warps en que no se necesitan leer como mínimo las 26 posiciones del vector.

Si se nos indica que el ancho de banda global ha sido de 37.014 GB/s, significa que se han

entregado 4,086,424 bytes en total. Si tenemos 128,529 peticiones vemos que se entregan

los 32 bytes por petición.

Por otro lado, si nos fijamos en el bloque de las escrituras este si tiene una eficiencia del

100%, ya que cada thread escribe en una posición distinta del vector resultado. Por lo tanto,

se realizarán peticiones de escritura de 32 bytes y por ende, se realizarán transacciones de

32 bytes de escritura

Visto esto, sabemos que el ancho de banda de las lecturas está “inflado”, ya que hay datos

que trae que no se utilizan, y que sumado al ancho de banda de las escrituras tenemos que

hay un total de 32.489 GB/s. Sabiendo que la K40c tiene un ancho de banda máximo de 288

GB/s, utilizamos solo el 11.281% de este. Sin embargo, el funcionamiento del código no

permite mejorar el acceso a memoria por las dos razones comentadas: se repiten accesos y

además, son accesos a bytes, por lo que la memoria nunca nos va a entregar transacciones

de su máxima capacidad.

45

2.5.3.4 Kernel con shared memory

Acabamos de ver que el programa no permite acceder a la memoria de la forma más

óptima. Sin embargo, también hemos visto que datos leídos son aprovechados por más de

un thread en el mismo warp. Si esto es así, se pueden aprovechar estos datos aún más para

todo el bloque de threads. Utilizaremos la shared memory para ello.

Para ello, vamos a inicializar nuevos vectores, Figura 36, indicando que van a formar parte

de la shared memory.

Figura 36. Inicialización de la shared memory

Para cargarlos con los mismos valores que hay en la memoria global, vamos a utilizar los

primeros 26 threads de cada bloque, tal y como se puede ver en la Figura 37. Por último, se

sincronizan los threads del bloque para que ninguno empiece su ejecución sin tener los

vectores de la shared memory completamente cargados.

Figura 37. Escrituras en la shared memory dependiendo del id tel thread

2.5.3.4.1 Resultados de ejecución

46

En la Tabla 5 vamos a ver un resumen de como quedan los nuevos tiempos de ejecución, en

ms, para cada distribución de trabajo. Seguimos trabajando con una muestra de 100

ejecuciones.

Optimizado 256 th/bl
(no shared)

128 th/bl
(shared)

256 th/bl
(shared)

512 th/bl
(shared)

Encriptador Total Media 17.08 0.539 0.535 0.510 0.458

Kernel Media No aplica 0.125 0.107 0.107 0.106

Tabla 5. Tiempos cálculo matriz Encriptador según distribución con shared memory

Por lo que los speedup quedarían como en la Tabla 6 escogiendo los nuevos tiempos de

ejecución de la distribución de 512 threads/bloque con shared memory (menor tiempo

total).

Optimizado 256 th/bl (no shared)

Encriptador
(Total)

Speedup 37.3 1.18

Tabla 6. Speedup respecto Enigma paralela y 256 th/bl de la distribución 512 th/bl con shared memory

Si volvemos a analizar el comportamiento del acceso a memoria, vemos que paras las

lecturas vamos a aumentar la eficiencia hasta el 81.25% y las escrituras se quedan igual

Figura 38.

Figura 38. Nvprof con métricas de memoria para ejecución 512 th/bl con shared memory

Si nos fijamos en el bloque de las lecturas, se realizan muchas menos peticiones, debido a

que solo se realizan aquellas en que el dato que se necesita no está en la shared memory. Si

tenemos que el ancho de banda efectivo es de 2.0126 GB/s, y el kernel se ejecuta en 0.087

ms (más rápido que antes), tenemos que se leen 188,926 bytes (menos que antes) y si se

47

realizan 7,144 peticiones tenemos que se piden 26 bytes por petición (el número de

elementos de los vectores).

Por otro lado, las escrituras se comportan igual en cuanto a memoria global, ya que la

shared memory no influye en estas.

Veamos en la Figura 39 cómo se comportan los accesos en la shared memory.

Figura 39. Nvprof con métricas de shared memory para ejecución 512 th/bl

Vemos que la eficiencia cae drásticamente con la shared memory. Esto es debido a que esta

hace transacciones de 256 bytes, mientras que las peticiones son de 1 byte por thread en el

warp, es decir, 32 bytes.

Si quisiéramos comprobar la eficiencia del 12.38% que se nos muestra tenemos que ver lo

siguiente:

- Realizamos 128,529 peticiones de lectura (1 transacción por petición) y cada una de

ellas de 32 bytes, ya que cada thread quiere leer 1.

- Si sabemos que el programa tarda 0.087, tenemos un ancho de banda en lecturas de

un 43.815 GB/s.

- Realizamos también 7,144 peticiones de escritura (1 transacción por petición) y cada

una de ellas de 26 bytes, ya que los vectores tienen 26 posiciones.

- Por lo tanto, el ancho de banda para las escrituras es de 1.979 GB/s.

- Si sumamos el ancho de banda de la shared memory es de 375.967 GB/s. Si el ancho

de banda efectivo es de 45.794 GB/s tenemos que este es un 12.18% del ancho de

banda total. Obtenemos una desviación del 0.2% debido a que los anchos de banda

se han tomado solo con una ejecución.

Si nos fijamos, el número de peticiones de escritura de la Figura 39 concuerda con el número

de peticiones de lectura de la Figura 38, ya que son peticiones únicas de lecturas (sin

repeticiones) para escribirlas en la shared memory una única vez por bloque.

Otro dato para fijarse es de que según la distribución del trabajo, los anchos de banda en la

shared memory van a variar. A mayor número de bloques trabajando concurrentemente en

48

el device, vamos a tener un mayor ancho de banda en las escrituras y uno menor en las

lecturas. Se obtiene un mayor ancho de banda en escrituras ya que las escrituras son por

bloque, y al haber más, hay más peticiones de estas.

Por lo tanto, el código al ser así no aprovecha el ancho de banda que puede ofrecernos la

shared memory pero, no lo necesita. Por tanto, la limitación está en este.

2.5.3.5 MultiGPU + shared memory

En el nodo donde se ejecutan los códigos de este proyecto hay 2 GPUs en total, por lo que

podríamos dividir el trabajo total en estas dos, siempre y cuando, cada GPU vaya a trabajar

al 100% (o por lo menos una). En este caso esto sucede siempre, ya que como hemos visto

en el apartado “2.5.3.2 Distribución del trabajo”, todas las distribuciones de trabajo tienen a

los 30,7720 threads de la GPU trabajando concurrentemente y además, nos sobran bloques

de trabajo para encargarlos a la otra GPU.

2.5.3.5.1 Envío de información a los devices

Nuestra idea detrás de trabajar con dos GPUs es ganar algo de concurrencia, por lo que

también podemos ganarla mediante las llamadas asíncronas de transmisión de datos entre

GPU y CPU.

Para conseguir esto, lo primero que hemos hecho es que la información del host que habrá

que copiarla al device se genere con pinned memory, Figura 40, donde se asigna memoria no

paginada y por lo tanto, puede alcanzarse una velocidad x2 respecto a un malloc siendo este

memoria paginada.

Figura 40. Asignación no paginada de memoria, pinned memory

49

Con las llamadas de transferencia de datos asíncronas de la Figura 41, conseguimos que en

cuanto lancemos la llamada, se le devuelve el control a la CPU mientras que la GPU realiza

esta transferencia, ganando así concurrencia.

Figura 41. Transferencias asíncronas de datos entre GPU-CPU

Estas transferencias habrá que hacerlas dos veces, una para cada device.

2.5.3.5.2 Kernel

Al distribuirse el trabajo entre dos GPUs, vamos a tener que modificar el kernel

mínimamente. El primer device ejecutará todas las posiciones que puede y el segundo las

que quede, ya que lo más posible es que para el segundo device, le sobren posiciones a

ejecutar.

Esto lo vamos a ver mediante un par de parámetros que vamos a pasar a cada kernel:

“offset”, que nos indicará que GPU está ejecutando el kernel y “numBloques”, que nos va a

indicar cuántos bloques tiene que ejecutar el device.

La idea detrás de esto es saber en que posición empieza a calcular cada device, y esto lo

obtenemos mediante la sentencia mostrada en la Figura 42.

Figura 42. Cálculo del primer elemento a calcular para cada GPU

El resultado varía respecto al número de bloques que hay. Por ejemplo, si el device es el 0 y

la distribución es de 128 threads por bloque (1786 bloques), sabemos que el último

elemento que va a calcular va a ser el 228,607 (blockIdx.x será 1785, blockDim.x será 128 y

threadIdx.x será 127). Por lo tanto, el device 1 tiene que empezar calculando por la posición

228,608.

2.5.3.5.2.1 Resultados de ejecución

50

En la Tabla 7 se muestran los nuevos tiempos de ejecución para dos GPUs. Seguimos

teniendo una muestra de 50 ejecuciones y en el orden de ms.

Optimizado 512 th/bl
(shared)

128 th/bl (2
GPUs)

256 th/bl (2
GPUs)

512 th/bl (2
GPUs)

Encriptador
(Total)

Media 17.08 0.458 0.114 0.118 0.117

Tabla 7. Tiempos cálculo matriz Encriptador según distribución con 2 GPUs

Por lo tanto, el speedup final cogiendo la nueva distribución de 128 th/bl (las tres son

perfectamente válidas, ya que la desviaciones son del orden 0.001) para el cálculo de la

matriz Encriptador de nuestro código de la Enigma es el de la Tabla 8.

Optimizado 512 th/bl (shared)

Encriptador (Total) Speedup 149.85 4.02

Tabla 8. Speedup respecto Enigma paralela y 512 th/bl con shared memory de la distribución 128 th/bl con 2

GPUs

Como podemos observar, aún ejecutando con 2 GPUs sobrepasamos el 2 de speedup

respecto a la anterior versión de shared memory. Esto es debido a las transmisiones

asíncronas y a la concurrencia que estas permiten. Durante los resultados que hemos ido

viendo de la matriz Encriptador, se utilizaba más tiempo en las transmisiones de datos que

en el propio kernel, y aquí, cuando permitimos concurrencia, se refleja mejor.

2.5.4 Paralelizar el acceso a Encriptador

2.5.4.1 Envio de información al device

Para cualquiera de los tres casos vistos anteriormente; Caso A, Caso B y Caso C, el kernel va a

necesitar toda la matriz Encriptador, todo el texto que queremos encriptar/desencriptar y

toda la matriz Ruta, Figura 43. Como el acceso a la matriz Camino se hace dos veces para el

Caso C, y una vez para el Caso A, estos, los hacemos antes de mandar a paralelizar, así no

tenemos que enviar esta matriz al device y por ende, nos ahorramos un malloc.

51

Figura 43. Asignación de memoria y transferencia de datos entre GPU-CPU

2.5.4.2 Distribución del trabajo

Al igual que en el apartado “2.5.3.2 Distribución del trabajo”, los tres mejores resultados los

hemos obtenido con las siguientes distribuciones: 128 threads por bloque, 256 threads por

bloque y 512 threads por bloque.

En este caso, el tamaño con el que trabajaremos va a ser el tamaño del texto a

encriptar/desencriptar. Para nosotros, 235,974 caracteres. No se va a hacer una explicación

detallada, ya que se realizó en el apartado “2.5.3.2 Distribución del trabajo” y los cálculos

són idénticos.

2.5.4.2.1 128 threads por bloque

En total hay 1,844 bloques de 128 threads cada uno ((235,974 + 125) / 126), 16 bloques

trabajando por SM y por lo tanto, 240 bloques trabajando en el device: 30,720 threads

trabajando.

2.5.4.2.2 256 threads por bloque

En total hay 922 bloques de 256 threads cada uno ((235,974 + 255) / 256), 8 bloques

trabajando por SM y por lo tanto, 120 bloques trabajando en el device: 30,720 threads

trabajando.

2.5.4.2.2 512 threads por bloque

En total hay 461 bloques de 512 threads cada uno ((235,974 + 511) / 512), 4 bloques

trabajando por SM y por lo tanto, 60 bloques trabajando en el device: 30,720 threads

trabajando.

52

2.5.4.3 Kernel

Creamos tres kernels para cada uno de los casos. Estos kernels se diferencian en el primer

elemento que se accede de la matriz Ruta. En el Caso C, se accede al primer elemento de

Ruta, ya que la posición inicial de los rotores y la siguiente (donde había cambio en el rotor

central) están guardadas en la matriz Camino que ya se ha accedido. En el Caso B se accede

también a la primera posición de Ruta, ya que en Camino solo guardamos la posición inicial

de los rotores. Por último, con el Caso A tenemos que acceder a la segunda posición de Ruta,

ya que en la primera, tenemos la posición inicial de los rotores.

Si por ejemplo cogemos de ejemplo el kernel del Caso B, Figura 44, vemos como vamos a

acceder con la variable “j” a la primera posición del vector, ya que el primer thread del

bloque 0 nos va a devolver el valor de 0 para la variable “i”.

Figura 44. Kernel de acceso a Encriptador para el Caso B

Por lo tanto, para el Caso C, tendremos la instrucción “int j = (i-1)%16900” y para el Caso A la

instrucción “int j = (i+1)%16900”.

Una vez tenemos la posición obtenida de los tres rotores, conseguimos la letra que

queremos encriptar/desencriptar del texto y accedemos a la matriz Encriptador, tal y como

vimos, previamente calculada.

En definitiva y tal como vemos en la Figura 44, lo que paralelizamos es el acceso a memoria

del vector Ruta, del texto que queremos encriptar/desencriptar y de la matriz Encriptador.

2.5.4.3.1 Resultados de ejecución

53

El resultado de los tiempos de ejecución para el acceso a Encriptador es el que se muestra

en la Tabla 9. Muestra de 100 ejecuciones del código y en el orden de ms.

Optimizado 128 th/bl 256 th/bl 512 th/bl

Acceso Total Media 885.38 0.353 0.356 0.358

Kernel Media No aplica 0.047 0.047 0.047

Tabla 9. Tiempos acceso Encriptador según distribución

Como vemos, conseguimos los siguientes speedup, Tabla 10, respecto al código optimizado.

128 th/bl 256 th/bl 512 th/bl

Acceso (Total) Speedup 2508.16 2487.02 2473.13

Tabla 10. Speedup respecto Enigma paralela según distribución

Vemos que el speedup es muy elevado en este caso. Esta optimización se comporta mejor

que la que vimos en el apartado “2.5.3.3.1” donde miramos los resultados de los tiempos

sin utilizar shared memory ni multiGPUs para el precálculo de la matriz Encriptador. Si nos

volvemos a basar en lo que se mostró en el apartado “2.5.2 Objetivos de una ejecución en

cuda”, volvemos a cumplir por lo menos, dos de los tres objetivos que propusimos: tenemos

una buena distribución del trabajo (todos los threads tienen trabajo) y no hay prácticamente

divergencia en el camino de estos (solo en los últimos).

Veamos cómo se comportan los accesos a memoria para este kernel, Figura 45. Nos

basaremos en la distribución de 128 th/bl que es la que mejor speedup nos ha dado.

Figura 45. Nvprof con métricas de memoria para ejecución 128 th/bl

Como podemos observar, aunque la mejora haya sido tan grande, la eficiencia en las lecturas

es muy baja, 15.32%. Esta eficiencia va a variar conforme que tipo de caso se esté

ejecutando (A, B, C), vistos en el apartado “2.4.1 Matriz Encriptador”. El Caso A, accede a la

54

vector Ruta con un offset de 1, el B con un offset de 0 y el C, también con un offset de 0. Si el

el offset es 0 no hay problema, ya que los accesos van a estar alineados a 32, pero si

tenemos un offset de 1, el thread 31 del warp va a acceder a la posición 32 del vector, por lo

tanto, en ese caso serán 2 transacciones de lectura por petición de ella.

También vamos a tener alineamiento o no para acceder al vector Data dependiendo del

caso. En el Caso C, la primera posición que se quiere acceder del vector Data en el kernel es

el 1, ya que la posición 0 ya se ha calculado fuera de él. Por lo tanto, tenemos un offset de 1.

Finalmente, la que más penalización nos da es el acceso a la matriz Encriptador, ya que su

posición depende de la letra del texto que queremos encriptar/desencriptar, y esta no se

puede saber. Por lo tanto, podríamos decir que los accesos son aleatorios.

Para las lecturas, escribimos en la misma posición del vector Data que la que hemos leído

para obtener la letra (transformamos la letra). Por lo tanto, al ser el Caso C el único que tiene

offset en el acceso a Data, tenemos que la eficiencia de las lecturas es del 50%, ya que por

petición, se van a generar 2 transacciones.

Por lo tanto, vemos que los accesos a memoria no son precisamente buenos, sin embargo, el

speedup que obtenemos es muy bueno. Esto se debe a que ocultamos la latencia con

memoria de una forma óptima, ya que las instrucciones de los threads son únicamente

accesos a memoria.

2.5.4.4 MultiGPU

Igual que vimos antes, antes de todo hemos de mirar si se van a utilizar por lo menos una de

las GPUs al 100%. Si revisamos el apartado “2.5.4.2 Distribución del trabajo”, todas las

distribuciones tienen los 30,720 threads trabajando concurrentemente. Además, nos sobran

bloques de trabajo para que se encargue la otra GPU.

2.5.4.4.1 Envío de información a los devices

Como ya vimos, nos vamos a beneficiar de las transmisiones de datos asíncronas. Por lo

tanto, lo primero va a ser asignar memoria no paginada en el host con pinned memory,

Figura 46 y luego haremos las transferencias pertinentes dos veces (una por GPU), Figura 47.

55

Figura 46. Asignación de memoria no paginada, pinned memory

Figura 47. Transferencia de información entre GPU-CPU

2.5.4.4.2 Kernel

Al igual que vimos en el apartado “2.5.3.5.2 Kernel”, tenemos que dividir el trabajo total en

dos GPUs. Este número no lo sabemos fijo como pasaba en ese apartado, ya que el tamaño

varía según el fichero de texto que queramos encriptar/desencriptar. Seguiremos pasando

los parámetros de tipo entero que llamamos “offset” Y “numBloques” para saber qué GPU

está ejecutando ese kernel y por ende, desde donde tiene que calcular, Figura 48 para el

Caso A y B y Figura 49 para el Caso C.

Figura 48. Primer elemento a calcular por device. Casos A y B

Figura 49. Primer elemento a calcular por device. Caso C

El Caso C es distinto, porque como ya comentamos, el primer thread accede a la segunda

posición de Data, y por lo tanto, siempre hay un offset de 1.

2.5.4.4.2.1 Resultados de ejecución

En la Tabla 11 se muestran los nuevos tiempos de ejecución para dos GPUs. Seguimos

teniendo una muestra de 50 ejecuciones y en el orden de ms.

Optimizado 128 th/bl 128 th/bl
(2 GPUs)

256 th/bl
(2 GPUs)

512 th/bl
(2 GPUs)

Acceso
(Total)

Media 885.38 0.353 0.134 0.134 0.132

56

Tabla 11. Tiempos acceso Encriptador según distribución con 2 GPUs

Por lo tanto, conseguimos los siguientes speedup, Tabla 12, respecto al código optimizado y

a la ejecución de 128 threads por bloque ejecutando el kernel en una sola GPU.

Optimizado 128 th/bl

Acceso (Total) Speedup 6707.43 2.67

Tabla 12. Speedup respecto Enigma paralela y 128 th/bl de la distribución 128 th/bl con 2 GPUs

Seguimos sobrepasando el 2 de speedup aún ejecutando con el doble de GPUs que la

versión de 128 th/bl, por lo que las transferencias de información asíncronas siguen

ayudándonos a mejorar.

2.6 Resultado de ejecución final

Si hacemos una tabla resumen con la progresión que ha ido adquiriendo el código

optimizado a lo largo de los distintos apartados, obtenemos lo que podemos ver en la Tabla

13. Tiempos en ms.

Optimizado 2 GPUs

Encriptador Total Media 17.08 0.114

Kernel Media No aplica No considerado

Acceso Total Media 885.38 0.132

Kernel Media No aplica No considerado

Total Media 903.05 0.730

Tabla 13. Tiempo total de la Enigma paralela y la ejecución con 2 GPUs

Por lo que el speedup final del código de la Enigma es de un 1237.06.

3. Máquina Bombe

57

Cuando los ingleses se dieron cuenta de que el ejército alemán estaba encriptando sus

mensajes, empezaron a idear cómo harían para desencriptarlos, y así, ganar tiempo para

responder al movimiento de tropas.

Cuando se interceptaba un mensaje encriptado, si este quería ser desencriptado, se

necesitaba tener la configuración inicial de la Enigma para ese dia, ya que como hemos

mencionado, la Enigma trabaja en las dos direcciones con la misma configuración

(encripta-desencripta).

3.1 Complejidad de la Enigma

Si hacemos una serie de cálculos, podemos observar las combinaciones totales que podía

tener la Enigma, y por lo tanto, ver el problema al que se enfrentaban los ingleses para

conseguir la configuración inicial.

Partiendo de tener 5 rotores totales y pudiendo poner 3 de estos 5 en cualquier orden (sin

repetir), tenemos 60 posibles combinaciones para la selección de los rotores (5 x 4 x 3).

Una vez teníamos los rotores colocados, cada uno de ellos podía tener su letra inicial

distinta, por lo que teníamos 17 576 posibles combinaciones iniciales (26 x 26 x 26).

Por último, y el mayor grado de complejidad que tenía la Enigma, el Plugboard. Sabiendo

que el máximo de parejas que se podían conectar en el Plugboard era de 10, tenemos un

total de 150 738 274 937 250 combinaciones posibles (26!/(6! x 10! x 2^10))[19]. Solo

cuenta las combinaciones de 10 parejas porque es la más complicada de crackear debido a

su complejidad y por lo tanto, eran las que siempre utilizabanm la milicia nazi, tal como

vimos en la Figura 22 del apartado “2.2 Funcionamiento”. Más adelante, nosotros

tendremos en cuenta parejas menores de 10.

Si combinamos todo esto, existían 158 962 555 217 826 360 000 combinaciones posibles

para la configuración inicial.

La primera forma para resolver esto y que a todos se nos ocurre es, a partir de tener una

réplica de una máquina Enigma probar todas las configuraciones iniciales para esta y ver si lo

que vamos desencriptando cobra sentido, es decir, fuerza bruta.

Esto es inviable, por dos motivos: el primero es por el número que acabamos de ver el total

de combinaciones posibles; estas combinaciones hay que probarlas a mano. El segundo,

para cada combinación, ir mirando si lo que vamos desencriptando tiene sentido. Además

58

de todo esto, no nos debemos de olvidar de que la configuración inicial de la Enigma

cambiaba a diario, por lo que el descubrir la configuración inicial de ese día debía de

conseguirse como mucho en horas, antes del próximo cambio.

3.2 Solución teórica

En este punto, había que pensar en un método que evitase probar todas las combinaciones

posibles. El camino que habría que seguir es el de algún método que nos haga descartar

combinaciones hasta acercarnos lo máximo posible a la correcta.

El matemático británico Alan Turing, se dio cuenta, de que era muy posible que los mensajes

encriptados de los alemán siguieran un mismo patrón en algunas partes del texto[20]. Esto,

era muy posible que ocurriera ya que se habían observado el comportamiento de los nazis y

sobre todo, los discursos de los líderes y la respuesta de los seguidores.

Por ejemplo, sabemos que el gesto del saludo fascista iba la mayoría de veces acompañado

de la frase Heil Hitler!. También, se había observado que se saludaba a los oficiales

superiores con la frase Sieg Heil. Por lo tanto, la primera frase era muy posible que

apareciese en las partes finales de los mensajes o la segunda frase, en la parte inicial de

estos.

Sin embargo, las fuerzas de inteligencia de la parte aliada descubrieron que los mensajes

militares alemanes seguían el mismo patrón al principio de cada mensaje: daban el parte

meteorológico para ese día[20].

A partir de aquí, podíamos realizar los primeros pasos para obtener lo que habíamos

comentado al inicio de este apartado: buscar combinaciones que nos dieran contradicciones

para poder descartarlas. Vamos a ver un ejemplo de esto.

Imaginemos que tenemos un mensaje que nos llega encriptado con el siguiente aspecto:

QFZWRWIVTYRESXBFOGKUHQBAISEZ…

Y ahora, imaginemos que en ese momento, se sabía que había movimiento de tropas y

enfrentamiento en el Golfo de Vizcaya. Podríamos suponer la frase Wettervorher sage

Biskaya, que significa “Predicción del tiempo Vizcaya”. Si sabemos que todo lo relacionado

con el tiempo era al principio del texto, podríamos suponer lo que se observa en la Figura

50. De ahora en adelante, esta hipótesis de texto la llamaremos “crib”, tal y como hacían los

ingleses[20].

59

Figura 50. Posicionamiento del crib respecto al texto encriptado[20]

Con esto lo que se quiere demostrar es que cuando desencriptamos, la parte de arriba del

texto sea la de abajo. Sin embargo, hay un problema. Como podemos observar en la Figura

50, en la posición 13 hay tanto una S arriba como una S abajo, y esto es imposible, ya que la

enigma cuando encriptaba una letra jamás devolvía la misma (ya que el reflector generaba

un camino distinto al de la ida). Por lo tanto, teníamos que desplazar el texto una posición

hasta que esto no ocurriese, Figura 51.

Figura 51. Desplazamiento del crib una posición[20]

En la posición 8 hay dos Vs, en la 12 dos Es y en la 24 dos Aes. Por lo que deberíamos seguir

desplazando el texto hasta que no hubiera ninguna letra duplicada y conseguir lo que se

muestra en la Figura 52.

Figura 52. Desplazamiento del crib hasta no encontrar letras repetidas[20]

Tal y como he mencionado, queremos que cuando desencriptemos la parte

“RWIVTYRESXBFOGKUHQBAISE” el resultado sea “WETTERVORHERSAGEBISKAYA”. Para eso,

vamos a escoger la letra que más aparezca en ambos textos y “simular” que la conectamos

con otra letra en el Plugboard. Por ejemplo, vemos que la letra que más se repite en la

Figura 52 es la “E”. Podemos empezar haciendo que la “E” y la “A” estén conectadas en el

Plugboard. Esto significa, que cada vez que en el texto veamos una E, a la Enigma le entrará

una A y viceversa hasta que se llegue a una contradicción o no.

60

Un ejemplo de contradicción sería por ejemplo: en la posición 2, nosotros pulsamos la tecla

“E” y a la Enigma le entra una “A” debido a la conexión que hemos dicho EA (y viceversa) del

Plugboard, y saca una “P”. Como para la entrada “E” hemos forzado de que la salida debe de

ser una “W” significa que hay la conexión PW (y viceversa) en el Plugboard. Si seguimos

iterando y para la posición 14, hemos descubierto varias conexiones de Plugboards y una de

ellas es GT (y viceversa), a la Enigma le va a entrar la letra “T”, debido a la última conexión

que acabo de comentar. Si para esta ejecución, la salida es por ejemplo, una V, significa que

estamos diciendo que existe la conexión AV (y viceversa), pero nuestra hipótesis inicial era

que “A” estaba conectada “E”, por lo que hay una contradicción.

Además de esto último, Alan Turing se dio cuenta de que si llegamos a una contradicción,

todas las hipótesis del camino pueden ser descartadas también y no hace falta volver a

mirarlas, por lo que las conexiones EA, AE, GT, TG, AV, VA y todas las del camino son

erróneas[21].

En este punto, si se han comprobado todas las posibles combinaciones de Plugboard para la

letra “A” y todas han resultado contradicción, significa que o el texto debe de ser desplazado

aún más (realmente no estará en esta porción del texto que hemos supuesto) o que la frase

que hemos supuesto no es la correcta o no contiene suficientes letras diferentes como para

descubrir contradicciones.

Alan Turing, junto a su equipo se dio cuenta de que aún con este método, era lento sacar la

configuración inicial de la Enigma, ya que había igualmente que comprobar muchas

operaciones. Por eso, idearon una máquina que hiciera estos descubrimientos de

conexiones del Plugboard mediante la corriente, y por lo tanto, de una forma mucho más

rápida y eficaz. A esta máquina se la conoce como la Bombe.

3.3 Componentes de la Bombe

La Bombe era una máquina que albergaba tres hileras de 12 conjuntos (horizontales) de 3

rotores (verticales), Figura 53. Es decir, cada conjunto de 3 rotores simulaba una máquina

Enigma independiente. Por lo tanto, 36 máquinas Enigma. Esto permitía trabajar con cribs de

una longitud máxima de 36 letras, es decir, una Enigma por cada pareja de letras del crib y

del texto encriptado.

61

Figura 53. Dibujo del panel frontal de la Bombe[22]

3.4 Puesta a punto de la Bombe

Una vez visto el panel frontal de la Bombe, hay que conocer el panel trasero (el conexionado

eléctrico) para ver como realmente funcionaba y además, nos servirá para transformar este

funcionamiento en el código que simulará la ejecución de la Bombe.

Para la explicación, vamos a suponer que el abecedario va estar reducido a 8 letras (A-H).

Esto va a simplificar la explicación y las Figuras. Vamos a suponer entonces, que tenemos el

texto encriptado abajo y nuestro crib arriba en la Figura 54.

Figura 54. Posicionamiento del crib respecto al texto encriptado para un alfabeto reducido[23]

La máquina Bombe tenía 8 grupos de 8 cables cada grupo[23]. Cada grupo representaba una

letra de las 8 totales, y cada cable una letra de las 8 totales. Por ejemplo, el grupo “A”

contenía 8 cables que representaban las letras a-h, el grupo “B” contenía 8 cables que

62

representaban las letras a-h, y así sucesivamente, Figura 55. Esto servía para simular el

Plugboard de la máquina Enigma; si queríamos que “A” y “R” estuvieran conectadas en el

Plugboard, la letra “r” del grupo “A” era en la que se inyectaba la corriente.

Figura 55. Conexionado en diagonal de la Bombe[23]

Además, sabemos que el Plugboard funciona a dos bandas; si “A” está conectada con “R”,

significa que “R” está conectada con “A”. Es por esto, que se hace la conexión en diagonal

que vemos en la Figura 55. Tal y como está explicado en inglés, si por ejemplo, queremos

que “A” esté conectada con “B”, se inyectará corriente en el cable “b” del grupo “A”. Este

cable también tendrá que estar conectado al cable “a” del grupo “B” para que también haya

corriente en dicho cable.

Una vez tenemos el cableado colocado, pasamos a posicionar correctamente las Enigmas

(conjunto de tres rotores en vertical).

Tal y como mencioné en el apartado anterior, “3.3 Componentes de la Bombe”, cada Enigma

ejecutaría un par de letras de nuestro conjunto que creíamos que podía ser el correcto. Si

nos basamos en este caso actual, el crib tiene un total de 9 letras, por lo que solo haría falta

colocar 9 Enigmas.

Cada Enigma la tenemos que colocar con una posición inferior a la siguiente, o visto de otra

forma, la próxima que coloquemos con una posición siguiente a la actual, ya que es el

comportamiento de las iteraciones de una Máquina Enigma. Si seguimos trabajando con la

63

disposición de la Figura 54, si colocamos la primera Enigma (la que calcula la entrada “E” y la

salida “B” o viceversa) en la posición AAA, la segunda Enigma (que calcula la entrada “D” y la

salida “E” o viceversa) deberá estar en la posición AAB y así sucesivamente, Figura 56.

Figura 55. Posición inicial de cada Enigma respecto a la posición en el texto[23]

Como podemos observar, se incrementa siempre el rotor “top”, es decir, el rápido. Y cuando

se vuelve a llegar a la “A” en este, significa que ha dado una vuelta, por lo que

incrementamos en uno el rotor “middle”.

Por lo tanto, el conexionado de las Enigmas (representado en cuadrados y haciendo

referencia a la Figura 55) con el cableado sería el de la Figura 56. Como vemos, cada

cuadrado tiene indicado la posición del texto con el que estamos trabajando y la posición

inicial de los rotores. La Enigma con un “1”, trabajaría el descubrimiento de contradicción

para las letras EB y viceversa (por eso está conectada entre los grupos “E” y “B”, ya que

forzamos que si pulsamos la tecla “E”, la salida definitiva sea la “B” y viceversa. La Enigma

con un “2” para las letras DE y viceversa, la “3” con las letras BA y viceversa y así

sucesivamente.

64

Figura 56. Cableado y colocación de las Enigmas[23]

También podemos observar en la Figura 56, que colocan un registro en un grupo de cables.

Este, se coloca en el grupo que representa la letra que más aparece en el texto que estamos

trabajando tal y como también hicimos en el apartado “3.2 Solución teórica”, ya que será

este registro el que nos indique si hay contradicciones o no.

3.5 Funcionamiento

Como acabamos de decir, vamos a trabajar con la letra “E”, ya que es la que más aparece en

nuestro texto, Figura 54. Y vamos a empezar creando la hipótesis de que “E” está conectada

con “A” (primera letra del alfabeto que no es la “E”) y viceversa.

Figura 54. Posicionamiento del crib respecto al texto encriptado para un alfabeto reducido[23]

65

Lo primero que habremos de hacer una vez hecho el conexionado y la puesta de los rotores,

será inyectar voltaje por el cable de nuestra hipótesis, en nuestro caso, el cable “a” del grupo

“E”, marcado de color negro en la Figura 57 (no hay que fijarse por ahora en los otros cables

en negro). Sí que nos hemos de fijar en que este cable negro, sigue el conexionado en

diagonal que vimos en el apartado anterior y por lo tanto, el cable “e” del grupo “A” también

está en negro (con voltaje), creando las conexiones del Plugboard AE y viceversa.

Figura 57. Muestra de contradicciones[24]

Como vimos en el apartado “3.2 Solución teórica”, la idea de la Bombe es descubrir

contradicciones mediante descubrir incongruencias en los Plugboards, y esto es

precisamente lo que se ve en la Figura 57.

Si volvemos a fijarnos en el cable negro (cable “a” del grupo “E”), veremos que es entrada de

la Enigma etiquetada como 1 AAA, por lo que ejecutará el par de letras en la posición 1 de la

Figura 54 con los rotores en la posición AAA. Este par de letras son: “B” y “E”. Como solo

66

tenemos voltaje en uno de los cables del grupo “E” solo será este el que funciona como

entrada para la Enigma. Veamos en la Figura 58 una ampliación de dicha Enigma.

Figura 58. Interconexionado de la primera Enigma[24]

La entrada de la Enigma sería el cable “a” del grupo “E”, es decir, la primera entrada de

arriba a la derecha. Si seguimos la trayectoria del conexionado interno (está simplificado al

de una Enigma real), la salida es la tercera de la izquierda, por lo que sería el cable “c”.

Por ahora tenemos, que se pulsa la tecla “E”, y como esta, está conectada a la letra “a”, es

esta última la que le entra a la Enigma. La Enigma itera y saca una “c”. Sin embargo, en

nuestras suposiciones de la Figura 54, nosotros forzamos a que cuando presionamos la tecla

“E”, la Enigma nos devuelva una “B”, por lo que suponemos, que “B” y “c” están conectadas

mediante el Plugboard. Por lo tanto, y como se vuelve a ver en la Figura 57, a parte de tener

voltaje en el cable “c” del grupo “B”, le llega también al cable “b” del grupo “C” mediante el

conexionado en diagonal.

Con esto último, hemos inyectado voltaje en dos grupos más, por lo que las Enigmas

conectadas con dichos grupos, van a tener corriente para computar una salida. Por ejemplo,

hemos inyectado voltaje en el cable “c” del grupo B, por lo que las Enigmas que estén

conectadas a ese grupo computarán, en este caso tanto la 3 AAC como la 9 ABA.

Para que se entienda del todo las contradicciones, veamos lo que sucede con la Enigma 3

AAC, Figura 59.

67

Figura 59. Interconexionado de la tercera Enigma[24]

Como hemos dicho, le va a entrar la letra “c” del grupo “B”, por lo que es la tercera entrada

de la derecha. Si seguimos el conexionado, computará la primera salida de la izquierda, es

decir, una “a”. Dado que esta Enigma está conectada con el grupo “A”, significa que la letra

“A”, estará conectada con “a”. Esto podría ser correcto, ya que si ocurre esto es lo mismo que

no conectar la letra “A” con nada en el Plugboard. Sin embargo, al principio dijimos que las

letras “E” y “A” estaban conectadas, por lo que tenemos una contradicción. Además, dos

cables del grupo “A” pasarán a tener voltaje, el “e” que le llegó de la primera iteración y el

“a” de esta.

Sabemos que hay una contradicción porque estamos analizando con un dibujo, pero la

Bombe lo detectaba mediante el registro que pusimos en el grupo “E”. Es decir, se esperará a

ver si se llenan más cables con voltajes y se parará (lo veremos en el próximo apartado),

como le ha pasado al grupo “A”.

En la Figura 57, vemos que al final se han llenado de voltaje todos los cables del grupo “E”

menos uno, lo que significaría que la letra “E”, estaría conectada con “a”, “c”, “d”, “e”, “f”, “g”

y “h”, cosa que no es posible.

En resumen, la idea que vemos es que nosotros solo inyectamos voltaje en nuestra hipótesis

inicial y la máquina nos descubre si es correcta o no llenando con más voltaje más cables del

mismo grupo.

3.5.1 Parada de la Bombe

68

La Bombe tenía un mecanismo de parada únicamente cuando en el registro que hemos

colocado en el grupo de nuestra hipótesis, en nuestro caso el grupo “E”, se detectaban solo

1 cable con voltaje (el de nuestra hipótesis inicial) o 25 cables con voltaje.

Si solo veíamos a nuestro cable con el cual habíamos inyectado voltaje significaba que el

grupo de nuestra hipótesis no había recibido ninguna contradicción por ahora. Si por el

contrario, veíamos que nuestro grupo de la hipótesis tenía 25 cables con voltaje, como lo

visto en la Figura 57, significaba que sí había tenido contradicciones excepto para un cable,

el que no tenía voltaje y este podía ser la hipótesis correcta. En la Figura 60 podemos ver si

inyectamos solo con voltaje el cable que no había salido con voltaje en la Figura 57, vemos

que no se crea ninguna contradicción y la Bombe también pararía.

Figura 60. Muestra de no encontrar contradicciones[24]

Con cualquiera de las dos opciones, la Bombe entonces miraba si se cumplía lo mismo en los

demás grupos (si solo tenían 1 cable con voltaje o 25), y si era así, se paraba y entonces un

encargado anotaba la posición de los rotores de cada enigma y el cable con voltaje o sin

voltaje de cada grupo de cables.

Si la bombe ya había hecho una iteración de descubrimiento de contradicciones y no se daba

ninguna de las dos situaciones anteriores, la Bombe incrementaba la posición de cada

69

Enigma en 1, se volvía a inyectar voltaje en el cable de nuestra hipótesis inicial y volvía a

descubrir contradicciones. Esto era, porque la posición de los rotores no era la correcta en la

configuración inicial de la Enigma que habían utilizado para encriptar el mensaje.

Si se llegaba a la última posición de los rotores y la Bombe aún no había parado podía

significar tres cosas: la primera, es que a lo mejor nuestro crib no estaba correctamente

colocado respecto al texto encriptado y por lo tanto, teníamos que desplazarlo aún más. La

segunda, era que a lo mejor este crib no era correcto, y la tercera, que los rotores no eran

los correctos o su orden no era el correcto.

Aquí nos podemos dar cuenta de la complejidad que tenía esta operación, por eso,

utilizaban más de una Bombe, para probar distintos rotores, con distinto orden, distinta

posición del crib…

3.6 Código secuencial

Con el código secuencial hemos tratado de ser lo más fiel posible a la máquina Bombe, con

la diferencia de que al tener una máquina tan potente como son los ordenadores de hoy en

día, simulamos una Bombe que pruebe con todas las posibles combinaciones de rotores.

Recordemos que en aquella época, el orden de los rotores y qué rotores poner lo hacían a

mano.

Además, para el cribe que estamos probando, se harán un total de 50 desplazamientos, ya

que es dentro de las primeras 50 letras de un texto encriptado donde se encontrará el parte

meteorológico, tal y como comentamos anteriormente.

En la Figura 61 puede verse el cuerpo principal de nuestro código secuencial para la máquina

Bombe. El primer bucle hace referencia a los dos tipos de reflectores que puede tener una

máquina Enigma. Los tres siguientes hacen todas las posibles combinaciones de tres rotores

con los 5 totales que hay, mirando que no se repitan ninguno. Una vez tenemos estos datos,

se inicializa una Enigma.

70

Figura 61. Código del cuerpo de la Bombe

Esta Enigma recorrerá las 50 primeras posiciones del texto, tal y como dijimos. Mirará si es

una posición posible (es decir, comprobará que no hay duplicación de letras, igual que

hicimos en el apartado “3.2 Solución teórica” y probará si se genera contradicciones para

cualquier posición inicial del primer rotor.

Para que quede más clara la diferencia con que haría una Bombe real transformada en

código sería la de la Figura 62. Lo único automatizado que sería son los tres bucles de las

posiciones de los rotores, ya que como dijimos, si la Bombe no detectaba una parada, esta

incrementaba el una posición el rotor rápido (y si a los otros dos rotores les tocaba,

también). Tanto la colocación de los rotores, como colocar las Enigmas de la Bombe

simulando la posición adecuada en el texto lo hacían los operarios a mano.

Figura 62. Código del cuerpo real de la Bombe

Una vez lista la Bombe para iterar con una posición inicial para los rotores, inicializamos a 0

una matriz (wires) que simula el cableado explicado en el apartado “3.4 Puesta a punto de

la Bombe” Figura 55. Por lo tanto, será una matriz con 26 vectores de 26 posiciones por

vector. Cada uno de los vectores hace referencia a un grupo de cables representado una

letra (A-Z), y cada una de las 26 posiciones hace referencia a uno de los 26 cables que tiene

cada grupo (a-z). El hecho de inicializar a 0 simula que ningún cable contiene voltaje en ese

momento.

71

Después de esto, se pone a 1 el elemento de la matriz correspondiente a nuestra hipótesis

inicial, haciendo referencia que en ese cable, de ese grupo hay voltaje. Por ejemplo, si

nuestra hipótesis inicial es que “E” está conectada a “A” y viceversa, significa, como vimos,

que el cable “a” del grupo “E” tendrá voltaje, y que el cable “e” del grupo “A” también

tendrá. Si llamamos a “E” “hip” y a “A” “hip2”, quedaría como se ve en la Figura 63.

Figura 63. Sentencia que simula inyección de voltaje en la hipótesis

A partir de tener un cable ya con voltaje, la Enigma/s que está/n conectada/s a ese cable ya

puede producir salidas y por lo tanto, dejar con voltaje esos cables y por lo tanto, posibilitar

a otras Enigmas que saquen salidas y así sucesivamente. Por lo tanto, cada vez que a un

cable le llegue voltaje por primera vez, lo encolaremos de la misma manera que hemos

hecho con la hipótesis inicial. Y cuando todas las Enigma de un cable hayan computado, se

desencola este cable (haciendo ver que ya se han descubierto salidas por ellos y por lo tanto,

ya no hace falta volver a computar con ellos).

Una vez no queden elementos en la cola, la Bombe pasará a ver cuántos cables hay con

voltaje para el grupo de nuestra hipótesis inicial (letra “E” o lo que habíamos llamado en el

código: “hip”), Figura 64. Esto simula lo que hacía la Bombe mirando los cables con voltaje

que había en el registro. Recordemos que solo nos interesaba que hubiera 1 o 25.

Figura 64. Código que simula la detección de voltaje en el registro

Si el número de cables con voltaje es 1, lo único que el código va a hacer es una pasada por

todos los grupos de cables restantes viendo si hay solo 1 cable con voltaje por grupo o

ninguno, Figura 65. Es decir, tal y como vemos, si hay más de un cable con voltaje significa

que hay una contradicción en ese grupo de cables, por lo que no nos sirve esa salida de la

Bombe.

72

Figura 65. Código que comprueba que todos los grupos tienen como máximo 1 cable con voltaje

Si por el contrario, el número de cables con voltaje es 25, el código hará una iteración extra

de la Bombe inyectando voltaje en el cable que no lo tenía y luego, hará lo mismo que en la

Figura 60.

3.6.1 Formato de salida

Una vez el programa ha trabajado todas las posiciones posibles, nos va a volcar un output

como el de la Figura 66. El resultado son todas las posibles combinaciones de rotores,

reflector, posición inicial de los rotores y plugboard (por este orden) que son candidatos a

ser la configuración inicial de la Enigma correcta. Son candidatos porque aún no han

generado contradicción (esto dependerá, tal y como vimos en el apartado “3.2 Solución

teórica”, de la cantidad de letras distintas que podamos descubrir mediante nuestro texto.

73

Figura 66. Resultado de todas las paradas de la Bombe sin contradicciones

3.6.2 Fichero encriptado y crib

El fichero encriptado con el que vamos a trabajar va a ser el resultado de haber pasado por

una máquina Enigma el fichero de texto que vimos en el apartado “2.3.1.1 Fichero a

encriptar/desencriptar”, es decir, el libro “Las Indias Negras” de Julio Verne.

Nuestro crib, va a ser “AUTHORJULIOVERNE”, ya que tal como mencionamos en ese mismo

apartado, todos los textos iban a tener dentro de sus 50 primeras letras la palabra

“AUTHOR” seguida del nombre y apellido del autor. Esto simula cómo empezaban los

alemanes los textos encriptados (con el parte meteorológico).

3.6.3 Resultados de ejecución

En la Tabla 14 podemos observar el tiempo total de la ejecución secuencial y el tiempo de la

parte que podemos paralelizar. Los tiempos son en el orden de segundos.

74

Total Paralelizable

Bombe secuencial 6262.85 6262.61

Tabla 14. Tiempo de ejecución total y paralelizable de la Bombe

Por lo tanto, podemos observar que el 99.996% del tiempo del programa es paralelizable.

3.7 Código cuda

Una vez visto el código secuencial, vemos que el cuerpo principal del código tenía muchos

bucles, por lo tanto, podíamos paralelizarlo. En total, tenemos las siguientes iteraciones:

2x bucle reflector

5x bucle slow

5x bucle middle

5x bucle fast

50x bucle p

26x bucle s

26x bucle m

26x bucle f

Por lo tanto, 219,700,000 iteraciones en el peor caso. Recordemos que en el bucle p, se veía

si había letras duplicadas, por lo que sí existen estas, nos ahorraremos 26^3 iteraciones de

los bucles “s”, “m”, y “f”. Si queremos que cada iteración la ejecute un thread de la GPU

vemos que hay iteraciones suficientes para ello, 30720 threads por device. Es por eso, que

he decidido dejar fuera de la paralelización el bucle del reflector y los tres bucles de los

rotores (seguimos teniendo como máximo 878,800 iteraciones por delante para computar.

3.7.1 Envío de información al device

En este código, el device va a necesitar que se le envíe la misma información que enviamos

en el código cuda para la Enigma, puesto que la máquina Bombe, no es más que diversas

Enigmas, Figura 67. Además, va a necesitar también el trozo de texto (“d_DataIn2”) que

suponemos que va a estar dentro del texto encriptado y un espacio para almacenar nuestra

hipótesis si la iteración de la Bombe ha dado contradicción o no (“d_output”).

75

Figura 67. Asignación de memoria en el device y transferencia de información entre GPU-CPU

3.7.2 Distribución del trabajo

He analizado 4 combinaciones de distribuciones de trabajo hasta toparme con una que

ralentizase mucho el tiempo de ejecución respecto a las otras. Estas combinaciones son las

que vamos a ver a continuación (no van a tener una explicación detallada, dado que es el

mismo procedimiento que hemos visto tanto en el apartado “2.5.3.2 Distribución del

trabajo” como en “2.5.4.2 Distribución del trabajo”.

Importante recordar que aquí el tamaño del programa va a ser 26^3*50 (878,800), tal y

como mencionamos al final del apartado “3.7 Código cuda”, ya que dejábamos fuera el

bucle del reflector y los 3 bucles de los rotores. Por lo tanto, estas iteraciones deberán ser

multiplicadas por 2*26^3.

3.7.2.1 128 threads por bloque

Tenemos 6,866 bloques de 128 threads cada uno., 16 bloques por SM y por lo tanto, 240

bloques de 256 threads trabajando a la vez (30,720 threads).

76

3.7.2.2 256 threads por bloque

Tenemos 3,433 bloques de 256 threads cada uno, 8 bloques por SM y por lo tanto, 120

bloques de 256 threads trabajando a la vez (30,720 threads).

3.7.2.3 512 threads por bloque

Tenemos 1,717 bloques de 512 threads cada uno, 4 bloques por SM y por lo tanto, 60

bloques de 512 threads trabajando a la vez (30,720 threads).

3.7.2.4 1024 threads por bloque

Tenemos 859 bloques de 1024 threads cada uno, 2 bloques por SM y por lo tanto, 30

bloques de 1024 threads trabajando a la vez (30,720 threads).

3.7.3 Kernel

Cada thread debe saber cuál es la iteración de la Bombe que tiene que ejecutar. Esto lo

podemos ver en la Figura 68. Lo primero es ver si nuestro thread está dentro del número de

iteraciones que mandamos a paralelizar (como vimos, 878,800).

Figura 68. Código de la posición a ejecutar por el thread

Si el thread tiene asignada una posición correcta dentro de la ejecución del device, hemos de

mirar cual es la iteración de la Bombe que le corresponde. Por ejemplo, cogemos la

distribución de trabajo de 128 threads por bloque y tenemos el thread 73 del bloque 20. Pos

sería 20 * 128 + 73 (posición 2,633). Por lo tanto, estaríamos mirando la iteración de la

Bombe con:

77

- Rotor rápido en la posición 7 (letra “H”)

- Rotor del medio en la posición 23 (letra “X”)

- Rotor lento en la posición 3 (letra “D”)

- Posición 0 del texto encriptado

Una vez el thread sabe con qué iteración de la Bombe tiene que trabajar, este ejecutará el

mismo código que se describió en el apartado “3.6 Código secuencial”. Si su iteración no ha

llegado a ninguna contradicción, este guardará en el espacio que le mandamos al device la

hipótesis para la que no se ha cumplido ninguna contradicción. Si por el contrario, si ha

ocurrido contradicciones, pondremos en esa posición un “[“ (podría ser cualquier carácter <

“A” o > “Z”).

Fuera del kernel, el programa revisará este espacio de direcciones y para cada una de sus

posiciones, verá si el elemento pertenece a “A”-”Z” o distinto, Figura 69. Si lo es, lo ignorará.

Por el contrario, ejecutará una iteración de la Bombe con esa hipótesis e imprimirá el

resultado.

Figura 69. Código que valida si ha habido contradicción o no

3.7.3.1 Resultados de ejecución

El tiempo de ejecución para la máquina Bombe y para las distintas distribuciones de trabajo,

así como para la ejecución secuencial se muestra en la Tabla 15. Los tiempos son en el orden

de segundos.

Secuencial 128 th/bl 256 th/bl 512 th/bl 1024 th/bl

Bombe Cuda Total 6 262.61 254.74 255.43 256.61 359.58

Kernel No aplica 254.71 255.40 256.58 359.55

Tabla 15. Tiempo de cuda total y del kernel para cada distribución

Como vemos, conseguimos los siguientes speedup, Tabla 16, respecto al código secuencial.

78

128 th/bl 256 th/bl 512 th/bl 1024 th/bl

Bombe Cuda
(Total)

Speedup 24.58 24.52 24.41 17.42

Tabla 16. Speedup de cuda total respecto al código secuencial

Como siempre, hemos de analizar el comportamiento del código en cuda para ver si estos

resultados son buenos o pueden obtenerse de mejores. Si nos basamos en los tres objetivos

que marcamos para toda ejecución en cuda del apartado “2.5.2 Objetivos de una ejecución

en cuda”, solo conseguimos el primero, una buena distribución de los threads (excepto para

la distribución de 1024 threads por bloque), haciendo que todos los del device tengan

trabajo que hacer.

El problema principal de este código es que como se ha querido hacer lo más real a como

funcionaba la máquina Bombe, no es un programa pensado para ejecutarse en cuda. Vemos

que hay mejora respecto al código secuencial (para nada la que se suelen conseguir con

buenos programas en cuda) pero es simplemente porque tienes a miles de threads

ejecutando un código a diferencia de solo uno en la ejecución en secuencial. Esto se ve en

que hay una gran divergencia en el camino de los threads, ya que el programador no sabe

cuánto trabajo va a hacer cada uno, ya que se trata de conseguir contradicciones que

pueden ser en la iteración 1, en la 2, en la 20, …

Por lo tanto, si hay divergencia de threads, los accesos a memoria tampoco van a ser

óptimos ya que van a ser en desorden. Es decir, no vamos a poder ocultar la latencia a

memoria, cosa que vimos anteriormente que nos daba muy buen rendimiento en los

programas.

En la Figura 70 se muestra la salida del profiling de nvidia para ver como son los accesos a

memoria. Se ha hecho la ejecución de solo 1 posición de rotores, ya que es indiferente,

puesto que todo el programa se comporta de la misma forma.

Figura 70. Nvprof con métricas de memoria para ejecución 128 th/bl

79

Como vemos, la eficiencia de las lecturas es muy baja, 5.39%. Sin embargo, vemos que se

ejecuta una transacción de lectura por petición y esto es lo que siempre queremos obtener.

Si hacemos unos cálculos (sabiendo que el kernel para solo esta posición de rotores tarda

2.122 segundos) tenemos que se piden 1,72 bytes por petición. Si rescatamos que se

gestiona una transacción por petición, queda demostrado que hay divergencia en los

threads y que no se accede a memoria paralelamente.

A partir de ahora ignoraremos la ejecución con la distribución de 1024 threads/bloque

debido a que vemos que es a partir de aquí en que el rendimiento cae.

3.7.4 Kernel con shared memory

Una cosa que tenemos clara y segura es que cada thread va a tener que trabajar con los dos

textos que le hemos pasado al device: nuestro crib y la parte del texto encriptado. Por lo

tanto, sabemos que por lo menos, en este aspecto nos vamos a beneficiar si utilizamos

shared memory.

Además, vamos a beneficiarnos de traernos a la shared memory los vectores de los rotores y

el reflector, tal y como hicimos en el apartado “2.5.3.4 Kernel con shared memory” del

cálculo de la matriz Encriptador.

Para ello, vamos a inicializar nuevos vectores, Figura 71, indicando que van a formar parte

de la shared memory.

Figura 71. Inicialización de la shared memory

Para cargar los dos textos, vamos a utilizar los primeros 100 threads de cada bloque y para la

resta de vectores, los 26 primeros, Figura 72. Por último, se sincronizan los threads del

bloque para que ninguno empiece su ejecución sin tener los vectores de la shared memory

completamente cargados.

80

Figura 72. Escrituras en la shared memory dependiendo del id del thread

3.7.4.1 Resultados de ejecución

En la Tabla 17 vamos a ver un resumen de como quedan los nuevos tiempos de ejecución,

en segundos, para cada distribución de trabajo. Como estoy mostrando en segundos, la

parte restante del código que se ejecuta en la CPU no la muestro, ya que es del orden de

muy pocos milisegundos y no muestra relevancia en el resultado de los tiempos.

Secuencial 128 th/bl
(no
shared)

128 th/bl
(shared)

256 th/bl
(shared)

512 th/bl
(shared)

Bombe Cuda Total 6 262.61 254.74 176.89 178.01 177.44

Kernel No aplica 254.71 176.86 177.97 177.41

Tabla 17. Tiempo de cuda total y del kernel para cada distribución con shared memory

Por lo que los speedup de la distribución de 128 threads/bloque con shared memory

respecto a la ejecución secuencial a la mejor distribución sin shared memory (128 threads

por bloque) van a quedar como se muestra en la Tabla 18.

Secuencial 128 th/bl (no shared)

81

Bombe Cuda (total) Speedup 35.40 1.44

Tabla 18. Speedup de cuda total respecto al código secuencial y a la mejor distribución sin shared memory

Si para la ejecución sin shared memory vimos que la eficiencia de las lecturas eran muy baja,

la eficiencia en la shared memory lo va a ser más. Esto es, porque seguimos con la misma

divergencia de los threads, por lo tanto, seguiremos no accediendo paralelamente a la

shared (lectura de 1 byte) y esta, como ya vimos en el apartado “2.5.3.4.1 Resultados de

ejecución”, nos va a entregar 256 bytes por transacción. Veámoslo igualmente en la Figura

73.

Figura 73. Nvprof con métricas de shared memory para la ejecución de 128 th/bl

Como dijimos, sí que aprovechamos la shared memory, pero no obtenemos tan buenos

resultados en comparación a si los accesos a memoria fueran óptimos desde un principio.

Estos tipos de código no se pueden analizar previamente al 100%, ya que como dijimos, al

haber divergencia en los threads, no puedes saber el comportamiento de estos, y esto, en la

mayoría de casos es penalizante en cuanto a rendimiento.

3.7.5 MultiGPU + shared memory

Como siempre, miremos primero si el trabajo que hay total (threads trabajando a la vez en el

device) nos llega por lo menos para que cargar una GPU al 100%. Si revisamos el apartado

“3.7.2 Distribución del trabajo”, todas las distribuciones tienen los 30,720 threads

trabajando y les sobran bloques para la otra GPU.

3.7.5.1 Envío de información a los devices

Como ya hemos visto anteriormente, lo primero va a ser asignar memoria no paginada en el

host, Figura 74.

82

Figura 74. Asignación no paginada de memoria, pinned memory

Y por último, hacer las transferencias entre GPU-CPU asíncronas, Figura 75. Recordemos que

estas transferencias se harán dos veces, una por GPU.

Figura 75. Transferencia asíncronas de datos entre GPU-CPU

3.7.5.2 Resultados de ejecución

Los resultados de la ejecución de la Bombe para las diferentes distribuciones se observa en

la Tabla 19. Los tiempos están en el orden de segundos.

Secuencial 128 th/bl
(shared)

128 th/bl
(2 GPUs)

256 th/bl
(2 GPUs)

512 th/bl
(2 GPUs)

Bombe Cuda (total) 6 262.61 176.89 74.56 75.01 74.82

Tabla 19. Tiempo de cuda total para cada distribución con 2 GPUs

Por lo tanto, el speedup que obtenemos respecto a la ejecución secuencial a la mejor

distribución con shared memory para 128 threads por bloque con 2 GPUs es la que se

muestra en la Tabla 20.

83

Secuencial 128 th/bl (shared)

Bombe Cuda (total) Speedup 83.99 2.37

Tabla 20. Speedup de cuda total respecto al código secuencial y a la mejor distribución con shared memory

Como vemos, superamos el 2x de speedup al usar el doble de GPUs. Esto es por lo mismo

que ya hemos visto anteriormente, nos beneficiamos tanto de la pinned memory, que es una

asignación de memoria más rápida y de las transmisiones de información asíncronas.

3.8 Resultado de ejecución final

Si hacemos una tabla resumen con la progresión que ha ido adquiriendo el código secuencial

a lo largo de los distintos apartados, obtenemos lo que podemos ver en la Tabla 21. Tiempos

en el orden de segundos.

Secuencial 2 GPUs

Bombe Cuda (Total) 6 262.61 74.56

Total 6 262.85 74.80

Tabla 21. Comparación de tiempos de cuda total y total entre código secuencial y 2 GPUs

Por lo que el speedup final del código con dos GPUs respecto a la ejecución en secuencial es

de 83.72.

4. Máquina check

Que la Bombe haya parado y por lo tanto, el operario haya apuntado el resultado no significa

que este resultado sea el definitivo. Como dijimos, es un plugboard que no ha obtenido

contradicciones para las letras descubiertas, pero si nuestro crib no es lo suficientemente

complejo, en cuanto a número de letras que cubre, puede que este plugboard no sea

correcto.

84

4.1 Combinaciones restantes

Recordemos que para crackear la máquina Enigma, antes de ejecutar las iteraciones con la

máquina Bombe, la Enigma tenía un total de 150,738,274,937,250 combinaciones posibles

en su configuración inicial, tal y como vimos en el apartado “3.1 Complejidad de la Enigma”.

4.1.1 Completar el plugboard

En el código de la Bombe limitamos las salidas a que sean solo generadas las que generen

como mínimo 8 parejas de plugboard distintas (con distintas me refiero a una pareja de dos

letras distintas). Por lo tanto, las combinaciones restantes para cada salida de la Bombe

estarán determinadas por este número de parejas distintas. Cuantas más haya descubierto,

menos iteraciones habrá que ejecutar.

En la Figura 76 muestro las tres primeras líneas de la Figura 66 del apartado “3.6.1 Formato

de salida”, para que sea más fácil llevar la explicación. Si nos damos cuenta, en el primer

output se han descubierto 11 parejas de plugboard en total, de las cuales, 10 de ellas son

parejas distintas. Al ser 10 el máximo de parejas distintas que puede tener un plugboard,

solo hay una combinación posible, y es precisamente la ya generada. Recordemos que poner

una pareja de mismas letras es como no poner nada, ya que no se hace ninguna conexión en

el plugboard.

Figura 76. Output reducido de la Bombe

En el segundo output se han generado 11 parejas, de las cuales 9 son distintas. Por lo tanto,

quedará como máximo una pareja de letras distintas con 6 letras que aún están libres (A, K,

O, R, S y W). Esto significa 6 combinaciones de mismas letras (AA, KK, OO …) y 15

combinaciones de letras distintas (AK, AO, AR …). Este último número sale de que tenemos

que combinar 6 letras (6!). Como queremos hacer solo 1 pareja de dos, nos sobran

combinaciones de 4 letras (6-2), dividimos por 4! Como el orden de esta pareja nos es

indiferente, dividimos por 1! Por último, AB es lo mismo que BA, por lo que dividimos por

2^1 (dos elevado al número de parejas que queremos hacer). Por lo tanto: 6! / 4!2. Si lo

sumamos a las 6 combinaciones y a la que ya hay, para este output de la Bombe hay que

comprobar 22 combinaciones totales.

85

Para el tercer output, se han generado 12 parejas de plugboard, de las cuales 8 son distintas.

Por lo tanto, quedarán dos parejas distintas como máximo con las 6 letras que aún están

libres (A, D, O, T, U y W). Por lo tanto, en este caso hay tres opciones de plugboard:

- El plugboard que sale directamente del output de la Bombe.

- El plugboard de 9 parejas distintas (hemos de generar una pareja más), por lo tanto

las mismas combinación que en el caso anterior (segundo output).

- El plugboard de 10 parejas distintas (hemos de generar dos parejas más), por lo tanto

el cálculo será: 6! / 2!2!2^2, es decir, 45 combinaciones

Por lo tanto, para este tercer output tenemos 1 + 21 + 45 combinaciones totales (67).

Si por ejemplo, nos saliese un output con 11 parejas de letras distintas, esto no es posible, ya

que el máximo son 10. Por lo tanto, este ni se comprueba y se descarta.

4.1.2 Posición inicial de los rotores

Recordemos que la posición de los rotores que anotaba el encargado solo era la posible

candidata a ser cierta si la primera posición de nuestro crib coincidía con la primera posición

del texto encriptado. Si no era así, se debía de tirar atrás tantas posiciones como la primera

posición de nuestro crib respecto a la del texto encriptado.

Si rescatamos el crib que teníamos en la Figura 54 del apartado “3.4 Puesta a punto de la

Bombe”, vemos que el crib coincide con la primera posición del texto encriptado, puesto que

si por ejemplo, la Bombe ha parado en la posición de los rotores “JRS”, es con esta posición

inicial con la que hay que trabajar.

Sin embargo, si rescatamos el crib de la Figura 52 del apartado “3.2 Solución teórica”, vimos

que hicimos desplazamientos, por lo que la posición “QFS” habrá que desplazarla las mismas

posiciones hacia atrás. Esto no puede parecer un gran problema a simple vista, pero si

recordamos que existen ocasiones en que el rotor de el medio puede hacer doble giro, se

nos abren más caminos de posibilidades para llegar a una posición en concreto.

Si analizamos la posición “QFS”, podemos suponer que la posición anterior es “QFR”, solo ha

girado el rotor rápido una posición, como hace siempre. Sin embargo, si estamos en la

posición “PER”, y el rotor de el medio es el II, la “E” es la muesca de este, por lo tanto, habrá

doble giro de rotor: “QFS”. Al estar el rotor del medio en su muesca, giran tanto él como el

rotor lento.

86

4.2 Máquina check histórica

Se trataba de una máquina parecida a una máquina Enigma con la diferencia de que no tenía

el mecanismo de giro de los rotores, sino que era manual. Esto servía para ir cambiando los

giros de estos de forma más fácil.

Al operario encargado de esta máquina se le dejaba lo que había generado la Bombe. Este,

tenía que ir desencriptando el mensaje y cuando llegaba a conjuntos de letras que no tenían

sentido, debía hacer un cambio en el plugboard (apartado “4.1.1 Completar el plugboard”)

y/o un cambio en las posiciones iniciales de los rotores (apartado 4.1.2 Posición de los

rotores”).

Podría darse la ocasión de que cambiase lo que cambiase no se llegaba a entender nada, por

lo tanto ese output de la Bombe lo descartaban.

4.3 Nuestra máquina check

Como nuestra máquina Bombe sí tiene en cuenta el recorrido de los rotores hacía atrás,

nuestra máquina check solo va a tener que comprobar las combinaciones restantes del

plugboard (la posición inicial siempre será correcta). Para comprobar estas combinaciones,

pensamos en dos formas distintas: una que se acercaba a lo que hacían los ingleses, y la

segunda una más automática.

Los ingleses, como he comentado, trataban de ir mirando si se iba entendiendo el texto que

iban desencriptando o no. Como nuestros textos son en castellano, decidimos simular esto

contabilizando el número de “QUE” que se generaban en el texto desencriptado. Si llegaba a

un porcentaje mínimo respecto a las letras totales, dábamos por posiblemente buena esa

combinación, y pasaría a la siguiente fase. Esta fase sería poner esta combinación en una

máquina Enigma y lo generado, hacer un comando “diff” con el texto original.

Este porcentaje mínimo que he mencionado es del 0.7%. Se hicieron pruebas con 31 libros

de distintas longitudes que siguieran el mismo formato de este proyecto y salió que el

mínimo de “QUE” en uno de los libros era del 0.73%.

El hecho de que nos basáramos en la palabra “QUE” viene dada a que mediante un

histograma de varios textos largos, vimos que era la combinación de tres letras que más

aparecía en castellano, alejándose bastante de la segunda, “ENT”.

87

La segunda forma que se nos ocurrió, era para cada combinación generar un desencriptado

y compararlo con un comando “diff” con el texto original. Esto nos daría automáticamente si

la combinación es válida o no. Sin embargo, dejamos de simular el hecho de que tenían que

ir entendiendo el texto que iban desencriptando.

4.4 Código secuencial

Nuestro programa partirá de leer el output que la Bombe ha generado y ha escrito en un

fichero de tipo texto. Por ejemplo, si nos fijamos en el trozo de output que hay en la Figura

76 del apartado “4.1.1 Completar el plugboard”, veremos que de la primera línea va a

aprovechar todo excepto el número que está entre la posición inicial de los rotores y la

primera pareja del plugboard, ya que este número es indiferente para este código.

La base principal de este código es saber cuánto es el número de parejas de distintas letras

que le queda al plugboard del output, ya que cuantas menos parejas le queden menos

iterará. Por lo tanto, cada vez que leamos de la línea del output una pareja de distintas letras

incrementaremos un contador que al final, lo acabaremos restando de 10 (máximo de

parejas).

Otro dato importante que necesitamos es qué letras son las que están libres. Esto lo

haremos mediante un vector que hemos llamado “libres” el cual, tiene 26 elementos. Este

vector se encarga de dejar a 0 el elemento cuya posición sea igual a la letra que está en una

pareja del plugboard (esto se hace dos veces por pareja, ya que son letras distintas) y solo

una vez para parejas de letras iguales. Un pequeño ejemplo está mostrado en la Figura 77,

donde primero vemos que hacemos el conexionado de la pareja con la función “Clavar”,

marcamos estas dos letras como “ya no son libres” y aumentamos conforme es una pareja

cogida.

Figura 77. Código para calcular el número de parejas del plugboard

A partir de aquí, nos falta generar todo el número posible de combinaciones de parejas de

letras distintas que nos quedan, de como máximo 10. Como dijimos, en la Bombe hicimos

que solo mostrara outputs que tenían como mínimo 8 parejas de letras distintas. El cuerpo

de los bucles para las combinaciones se muestra en la Figura 778.

88

Figura 78. Bucle del código para generar las combinaciones restantes

La matriz “actually_checked” graba las combinaciones de una pareja que ya se han generado

para no volver a generarlas, y la matriz “actually_checked2” graba las combinaciones de dos

parejas. Si nos volvemos a fijar en la Figura X, podemos ver que para cada combinación de

una pareja, la probamos y generamos las combinaciones restantes de dos parejas con esta y

las probamos.

Fuera de esta sentencia “if (parejasRestantes > 0)” tendremos que probar una combinación

extra que es la que se genera en el output, es decir, sin crear ningún conexionado más en el

plugboard. Siempre y cuando, “parejasRestantes” sea igual a 0, ya que 10 es el máximo que

pueden haber. Recordemos que “parejasRestantes” lo obteníamos de restar 10 a

“parejasCogidas”.

Para cada combinación generada, se operará como una Enigma, es decir, con las mismas

matrices Encriptador, Camino y Ruta que vimos en el apartado “2.4 Código optimizado”. Se

guardará la desencriptación del texto encriptado en un espacio, “DataOut” y

contabilizaremos el número de “QUE” que se han generado, tal y como comentamos en el

apartado anterior “4.3 Nuestra máquina check”, Figura 79.

Figura 79. Código que contabiliza en número de aparición de “QUE”

Por último, solo quedará ver si el número de veces que aparece la palabra “QUE” pertenece

al 0.7% del total de extensión del archivo desencriptado, Figura 80.

89

Figura 80. Código que mira si se llega al límite de “QUE”

4.4.1 Formato de salida

El output de nuestra máquina check nos mostrará un listado de las combinaciones que han

dado un porcentaje mayor o igual al 0.7 contando el número de “QUE” que generan al

desencriptar el mensaje. Para el ejemplo de la Figura 66 del apartado “3.6.1 Formato de

salida”, el resultado lo vemos en la Figura 81.

Figura 81. Output de la máquina Check

4.4.2 Resultados de ejecución

Para los resultados que vamos a ver a continuación, hemos escogido como output de la

Bombe el mismo que se ve en la Figura 66 del apartado “3.6.1 Formato de salida”. Como en

este código utilizamos la misma funcionalidad de la Enigma que vimos en el apartado “2.4

Código optimizado”, sabemos que vamos a poder paralelizar el guardado en la matriz

Encriptador y el acceso a Encriptador, Tabla 22. El tiempo es del orden de segundos.

Total Encriptador Acceso a Encriptador

Check 671.60 9.37 662.09

Tabla 22. Tiempo de ejecución del check secuencial

Viendo estos resultados, observamos que un 99.98% del tiempo de ejecución pertenece a

partes que pueden ser paralelizadas, por lo tanto, este código es altamente paralelizable.

90

Además, sabemos cómo se van a comportar las dos partes al paralelizarlas, ya que las vimos

anteriormente.

Sabiendo que el acceso a Encriptador es altamente paralelizable y que es un 98.60% de la

ejecución paralela, podemos predecir que este código va a obtener un alto speedup en

cuanto lo paralelizemos.

4.5 Código cuda

Para transformar nuestro código secuencial en paralelizable mediante cuda, es lo mismo que

ya vimos en el apartado “2.5 Código cuda”, por lo que no explicaremos en detalle cómo se

ha realizado, así como las diferentes distribuciones de trabajo que pueden verse en ese

mismo apartado.

Sin embargo, sí que crearemos dos programas distintos: uno con shared memory y otro con

2 GPUs + shared memory, tal y como vimos.

4.5.1 Kernel con shared memory

4.5.1.1 Resultados de ejecución

En la Tabla 22 podemos observar los tiempos de ejecución del programa paralelizado , es

decir, matriz Encriptador y el acceso a esta paralelizados en cuda. Para la ejecución de la

matriz Encriptador, se utiliza la distribución de 512 threads por bloque, ya que fue la

mejores resultados nos dio. Para el acceso a dicha matriz, utilizaremos la distribución de 128

threads por bloque por la misma razón. Muestra de 50 ejecuciones y tiempos en segundos.

Secuencial
Encriptador

Secuencial
Acceso

Paralelizado
Encriptador

Paralelizado
Acceso

Check Media Cuda 9.37 662.09 0.362 0.342

Tabla 23. Tiempo de ejecución del check secuencial y del check shared memory en cuda

En la Tabla 24 podemos observar el speedup que se obtiene respecto a la ejecución en

secuencial del cálculo de la matriz Encriptador, del acceso a esta y del total de ambos.

91

Encriptador Acceso Total

Check Media Speedup
cuda

25.88 1 935.93 953.78

Tabla 24. Speedup del check con shared memory respecto al secuencial

4.5.2 MultiGPU + shared memory

Anteriormente vimos que si podíamos utilizar dos GPUs para la ejecución de este código, ya

que tanto en el cálculo de la matriz Encriptador como en su acceso, por lo menos una de las

GPUs utilizaba todos sus threads.

4.5.2.1 Resultados de ejecución

En la Tabla 25, podemos observar los tiempos de ejecución del programa paralelizado

ejecutándolo con dos GPUs. Para el cálculo de la matriz Encriptador se utiliza la distribución

de 128 th/bl, y para el acceso a ella la misma. Lo comparamos con los tiempos obtenidos

anteriormente de la versión solo con shared memory. Muestra de 50 ejecuciones y tiempo

en segundos.

Paralelizado
Encriptador

Paralelizado
Acceso

2 GPUs
Encriptador

2 GPUs
Acceso

Check Media Cuda 0.362 0.342 0.072 0.073

Tabla 25. Tiempo de ejecución del check shared memory y del check 2 GPUs en cuda

Por lo que obtenemos, Tabla 26, los siguientes speedup totales de la parte de cuda para

nuestra ejecución de 2 GPUs respecto al secuencial y a la versión solo con shared memory.

Secuencial Paralelizado

Check Media Speedup cuda 4 630.76 4.85

Tabla 26. Speedup total de cuda por parte de 2 GPUs respecto al código secuencial y paralelizado

En esta tabla podemos ver el alto rendimiento que se consigue al asignar memoria no

paginada y realizar transmisiones de datos de forma asíncrona. Visto fríamente,

prácticamente es como si estuviéramos ejecutando el código con 5 GPUs.

92

4.6 Resultado de ejecución final

En el apartado “4.4.2 Resultados de ejecución”, vimos que la parte que no se podía

paralelizar era de un 0.02% del total del tiempo de ejecución del código. Esto son 0.14

segundos, que se compartirán con ambas versiones que hemos creado del código en cuda.

Por lo tanto, si sumamos dicho tiempo a cada ejecución obtendremos la tabla resumen

siguiente, Tabla 27.

Secuencial Shared Memory 2 GPUs

Check Total 671.60 0.844 0.285

Tabla 27. Comparación de tiempos finales de las dos versiones del check en cuda respecto a la secuencial

5. Bombe + check con fuerza bruta

Después de ver lo que tardamos en sacar los posibles plugboards válidos con la Bombe y

luego probarlos en la máquina check para ver si llegan a un número determinado de “QUE”,

nos preguntamos cuánto tardaríamos en sacar el mismo resultado si hiciéramos una

ejecución mediante fuerza bruta. Es decir, lo que para en la época de la Segunda Guerra

mundial era imposible y por eso, idearon el método de hipótesis y contradicciones, cómo se

comportaría hoy en día.

De hecho, ya hemos visto un programa de fuerza bruta, el de la máquina check. Pasados

unos rotores con una posición determinada, un reflector y un plugboard incompleto,

probaba todas las combinaciones de plugboard estantes y mirábamos si se llegaba al 0.7%

de “QUE” respecto al número de letras totales del texto desencriptado.

El código de fuerza bruta haría lo mismo pero con todas las combinaciones de rotores,

posiciones de estos, posiciones iniciales, rotores y plugboard (desde 0 parejas hasta las 10

máximas).

Este código lo dejé incompleto, de hecho, solo medí tiempos para la generación máxima de

dos parejas (de las 10 máximas totales) y una sola posición específica de rotores y de

reflector. En este caso, hice la prueba con los rotores II-IV-I, el reflector “B” y la posición

inicial “ZJQ”. Pese a estar incompleto, se ha decidido mencionarlo y dedicarle un apartado,

93

ya que nos va a mostrar los beneficios que se pueden llegar a lograr evitando la fuerza bruta

mediante otros métodos (si estos, son posibles).

5.1 Resultados de ejecución

Si computáramos solo una pareja del plugboard y rescatamos la fórmula que vimos en el

apartado “3.1 Complejidad de la Enigma”, vemos que obtenemos 325 combinaciones

distintas de este (26!/(24!1!2^1)). Esto tardó 0.266 segundos.

Sin embargo, si computáramos para dos parejas del plugboard, tenemos que añadir a las

combinaciones anteriores, 44 850 (26!(22!2!2^2)), por lo que ahora serían 45 175

combinaciones totales. Esto tardó 36.13 segundos.

En este punto vemos varias cosas:

- El tiempo es exponencial

- Para sola una pareja tenemos que se tarda de media 0.000696 segundos por

combinación.

- Para dos parejas tenemos que se tarda de de media 0.000799 segundos por

combinación.

Es decir, hay un tiempo extra que siempre se va a ir incrementando cada vez que añadamos

parejas. Al no poder hacer una ejecución para todas las parejas, voy a coger de tiempo por

combinación, 0.000696, para tirar al mínimo.

Si siguiéramos sumando parejas al código, llegaríamos a un total de tenerse que computar:

216 751 068 429 025 combinaciones. Por lo que tardaríamos 150 858 743 626.6 segundos.

Esto son 4 783.69 días (como mínimo). Recordemos que esto era para solo una posición, si

quisiéramos comprobar todas las posibles (5x4x3x26x26x26, 1 054 560), serían en total 228

577 006 722 512 604 000 combinaciones. Esto en días son 7 248 129 335 442.43.

6. Informe de GEP

6.1 Introducción

94

6.1.1 Identificación del problema

Para identificar el problema que existe, y que queremos resolver, tenemos que imaginarnos

que estamos en la época de la segunda guerra mundial y que, sobre todo, pertenecemos al

bando aliado.

Los británicos, como ya he comentado, han creado la máquina Bombe y han resuelto como

crackear la máquina Enigma. El problema está, que cada día tienen que hacer un cálculo

nuevo para crackearla, ya que la configuración de la máquina Enigma cambia diariamente.

Este cálculo, tarda alrededor de 20 minutos en realizarse, por lo que sí tardásemos menos,

conseguiríamos ser más proactivos en la guerra y por lo tanto, conseguir ventaja sobre el

enemigo cuando son ellos los que se creen que por cifrar los mensajes y que se va a tardar

mucho en descifrarlos, creen que la tienen.

Destacar también, que para que el tiempo de cálculo no supere los 20 minutos, hacen falta

varias personas trabajando a una velocidad alta y teniendo un conocimiento también alto

del tema en cuestión.

6.1.2 Actores implicados

Este proyecto va dirigido a todo aquél interesado en cualquiera de los dos temas que se

tratan: todo lo relacionado con la segunda guerra mundial relacionándola con la máquina

Enigma, y con todo lo relacionado con el cómputo de tarjetas gráficas mediante CUDA.

Además, puede llegar a ser de gran ayuda para cualquier persona no experimentada que

esté trabajando en CUDA. Durante el proyecto, se va a ir mostrando y explicando cómo

vamos a ir paralelizando un código mediante esta herramienta de programación, qué otras

opciones podemos implementar (mejores o peores) y los resultados que vamos a obtener

con todas ellas.

Por último, también puede ser también interesante para alguien que sí que esté

experimentada en trabajar en CUDA, ya que puede estudiar la paralelización hecha y ver si

puede aún mejorarla más.

6.2 Justificación

Tras hacer una búsqueda de diferentes trabajos de búsqueda relacionados con la máquina

Enigma, la mayoría que he encontrado son más históricos que científicos. Es decir, se

95

centran más en todos los hechos históricos relacionados con el tema en lugar de trabajar y

estudiar el caso de la máquina en sí.

Sin embargo, hay un trabajo de una ex-alumna de matemáticas de la universidad de

Zaragoza, concretamente, Sandra Paño Badía, que hace un trabajo titulado “El uso de

permutaciones para encontrar el cableado de la máquina Enigma”[25].

Este trabajo me viene perfecto de referencia, ya que quiero mostrar, mediante el cómputo

por fuerza bruta y luego la paralelización de este, todas las explicaciones que ella da sobre

las permutaciones necesarias para llevar a cabo el crackeo de la máquina Enigma.

Básicamente, va a servir para dar números en cuanto a tiempos de ejecución sobre lo que

ella habla a lo largo de su proyecto.

6.3 Alcance

6.3.1 Objetivo principal

El objetivo principal del proyecto es el de crear un código que simule el funcionamiento de

la máquina Bombe para crackear la máquina Enigma. Una vez se tenga, se pretende

paralelizar este lo máximo posible, mediante CUDA, para conseguir un tiempo de ejecución

mucho mejor.

6.3.2 Sub Objetivos

Durante todo el proceso del proyecto, se espera también encontrar y explicar los fallos que

se cometieron en aquella época (sobretodo por el bando de la alemania nazi) que llevaron a

cabo a que los ingleses dieran con la forma de crackear la máquina.

Una vez hecho el crackeo de la máquina, una idea que tuvo el profesor Agustín fue, de

incorporar el proyecto a la asignatura de tarjetas gráficas de forma incremental. Esto es,

porque el laboratorio de la asignatura es así, pero con distintos códigos. Si se utilizase este

código y desde un principio se sabe a dónde se quiere llegar, se verían los cambios

(mejora) en cuanto a los tiempos de ejecución que se van obteniendo con el código a lo

largo de la asignatura.

6.3.3 Obstáculos y riesgos

Existen una serie de riesgos en todo trabajo de investigación, los cuales, se convertirán en

obstáculos, ya que nos impedirán seguir la metodología del trabajo que queríamos desde

96

un principio. Sobretodo, la mayoría de estos, nos retrasarán en nuestra planificación

temporal. Se pueden dar las siguientes situaciones:

- Quedarse estancado en la implementación de una parte del código, porque no se

sabe seguir o porque no da los resultados en cuanto a tiempo de ejecución que

uno pensaba de un principio que iba a conseguir.

- Tener una idea mejor que la que ya se ha implementado, y por lo tanto, probarla

para ver si realmente da mejores resultados.

- No encontrar la información necesaria (detallada) para realizar la parte de la

implementación que esta representa.

- Los resultados en cuanto a tiempo de ejecución no son los esperados y no “existe” o

no se encuentra, una forma de mejorarlo.

- Puede que no sea posible conseguir el sub objetivo de utilizar dicho código para la

asignatura de tarjetas gráficas (o solo conseguirlo parcialmente), porque los

métodos de paralelización no dan para abarcar todos los conceptos que se dan en la

asignatura.

- Ser altamente dependiente del funcionamiento de los nodos boada, del ordenador

desde el cual se trabaja, de la luz, el internet …

6.4 Metodología

6.4.1 Cómo se desarrollará

Como he comentado anteriormente, el objetivo principal del proyecto es ver las mejoras de

tiempo al cual podemos llegar, por lo tanto, cada vez que se vayan incorporando mejoras en

el código, estos tiempos se irán comparando con la implementación anterior y con la

secuencial del principio.

Se empezará haciendo una optimización al código secuencial mediante la técnica

memoization, ya que podemos aprovechar el cálculo de una situación (entrada, posición de

los 3 rotores principales y posición el rotor reflector) para guardarla y utilizarla en un futuro

si se vuelve a dar. Se comparará el resultado de los tiempos de esta versión con la secuencial

con distintos textos de distintas longitudes para ver qué relación se obtiene y analizarla.

Una vez en este punto, se pasará a la parte de crackear la máquina. Para esto, se buscará

todo tipo de información sobre el procedimiento que llevaron a cabo en aquella época Alan

Turing y todo su equipo, junto con la máquina Bomb, diseñada para este propósito.

Simularé el comportamiento de dicha máquina pero con un código ejecutado con tarjetas

97

gráficas para ver el tiempo que se tarda en conseguir la configuración inicial de la máquina

enigma a partir de un texto ya cifrado. Con este tiempo, y el que se haya encontrado en

relación a lo que tardaban en descubrir dicha configuración inicial, se podrá ver cuánto

hubiese ayudado tener este tipo de hardware en aquella época.

Por último, se comentará el impacto del proyecto en el que estaba relacionado Alan Turing y

la máquina Bomb en relación a la situación mundial que se estaba viviendo en aquél

momento.

6.4.2 Con qué medios se desarrollará

Los medios con los que dispongo en un principio serán todos los que se espera en un

principio que vaya a necesitar a lo largo del proyecto. Estos son: el código secuencial con el

que parte el proyecto, la documentación de la asignatura previamente realizada de tarjetas

gráficas, la documentación que se encuentre en internet u otros medios, una cuenta en el

servicio boada de la universidad con la/s tarjeta/s gráfica/s que haya en este para los

cálculos, ordenador propio y conexión a internet con el que trabaje a lo largo del proyecto y

comunicación con el director del proyecto.

El código, realizado por el profesor Agustín Fernández, simula el comportamiento de la

máquina enigma con 3 rotores principales funcionando (a elección de 5 rotores totales), un

rotor reflector y un plugboard que conecta 2 letras (un máximo de 10 parejas, tal y como era

la máquina original). El texto a encriptar/desencriptar es el que está escrito en el código o un

texto externo a este.

La documentación que se va a utilizar principalmente relacionada con la asignatura de

tarjetas gráficas es toda la que explica el funcionamiento de la paralización de un código

mediante cuda.

Se va a utilizar el servicio ssh para conectarse remotamente desde el ordenador donde esté

trabajando al servicio Boada de la universidad, y así poder ejecutar el código con el

hardware del que disponen.

Por último, las reuniones con Agustín van a tener una importancia notable, ya que al haber

sido él, el precursor del trabajo y por lo tanto, conocedor del tema que se trata, podrá ser de

gran ayuda en cuanto a detalles que se me pasen, información que no tenga y guía del

trabajo en sí.

98

6.5 Descripción de las tareas

Se estima para este proyecto que la jornada laboral diaria es de 8 horas, siendo laborables

también los fines de semana y los festivos, puesto que es un trabajo académico. También

se tiene en cuenta, que si la tarea prevista para ese día se acaba antes de las 8 horas

laborables, no se realizará otra tarea ese día, sino que se empezará el día previsto.

Se estimó que la duración del proyecto iba a ser de 42 días (296 horas), iniciándose el 21 de

marzo de 2022 y con fecha de finalización prevista el 2 de mayo de 2022. Sin embargo,

acabó finalizando el 20 de junio de 2022. Por lo tanto, la duración total ha sido de 92 días

(401 horas).

6.5.1 Primera parte del proyecto (P1)

Búsqueda de información de la máquina Enigma (P1.1) (10 h)

Finalmente se han tardado 20 horas.

Es fundamental entender el funcionamiento de la máquina Enigma, ya que es un

componente electromecánico que vamos a tener que simular mediante código.

Se utilizará cualquier medio de información que pueda ser útil: Youtube, distintas páginas

webs, búsqueda de algún libro que trate de ello…

Estudiar el código inicial secuencial (P1.2) (10 h)

Partiendo del código secuencial del funcionamiento de la máquina, generado por el profesor

Agustín Fernández, hay que entenderlo y relacionarlo con lo descubierto del funcionamiento

de la máquina. Por lo tanto, la tarea (P1.1) es necesaria haberla realizado para empezar con

esta.

Tras haber estudiado el código, y con la ayuda de diferentes simuladores de la máquina

Enigma que hay por internet, verificaremos que las salidas son correctas para un número

determinado de caracteres como entrada.

Una vez verificadas las salidas y ver que son correctas, generaremos los tiempos de

ejecución para distintas entradas con las que trabajaremos a lo largo del proyecto. Estas

entradas se tratan de libros en castellano que ya dispongo en formato txt, por lo que hay

centenares de miles de letras (caracteres).

99

Optimizar el código secuencial (P1.3) (10 h)

Una vez estudiado el código, podemos deducir que partes de este son optimizables. Por lo

tanto, la tarea (P1.2) es necesaria haberla realizado para empezar con esta.

Se utilizarán todos los métodos de optimización de código que se han aprendido en la

asignatura de PCA que se puedan aplicar al código. De antemano, se sabe que uno se puede

aplicar sí o sí, el de memoization, ya que podemos calcular previamente todos los caminos

posibles para utilizarlos cuando se de dicha combinación.

Después, verificaremos si generamos la misma salida que las ejecuciones con el código sin

optimizar. Se utilizarán los mismos textos que se utilizaron con la tarea 2.

Una vez hemos visto que los outputs coinciden, hay que sacar los tiempos de ejecución de

estos para poder compararlos con los generados con el código sin optimizar.

Existe la posibilidad, y bastante alta, de que la optimización no haya sido suficiente y el

código sin optimizar nos genere mejores tiempos de ejecución. Esto es debido, a que el

texto que introducimos para encriptar no es lo suficientemente extenso como para que por

lo menos, la técnica de memoization tenga efecto. No hay que preocuparse de ello, puesto

que dicha técnica permite ser paralelizada.

Revisar programación en cuda (P1.4) (6 h)

Como hemos comentado, la técnica de memoization puede ser paralelizada, por lo tanto,

vamos a recapitular toda la información sobre la programación en cuda que obtuve en la

asignatura de tarjetas gráficas: la idea general de la programación en cuda, la programación

de varias tarjetas gráficas y la ejecución con streams. Se va a utilizar la documentación de

dicha asignatura.

Esta tarea puede ir haciéndose en cualquier momento, ya que no necesita de una tarea

previa para realizarse.

Revisar el hardware en boada (P1.5) (minutos)

Para la programación en cuda que vamos a realizar, nos es importante saber con qué

tarjetas gráficas vamos a estar trabajando, sobre todo a nivel de bloques y de threads de los

que disponen.

Esta tarea, al igual que la tarea 4, puede ir realizándose en cualquier momento, ya que no es

100

dependiente de otra.

Programar en cuda el código optimizado (P1.6) (20 h)

Finalmente se han tardado 30 horas.

Vamos a implementar en el código optimizado, por lo menos en la parte de la técnica de

memoization, la idea general de la programación en cuda (ejecución en bloques con un

número específico de threads por bloque, …). Por lo tanto, la tarea (P1.3) debe de haberse

realizado para empezar con esta.

Una vez implementado, hemos de verificar si la salida de este sigue siendo la misma que la

del código general. Si es así, pasaremos a sacar los tiempos de ejecución para las mismas

entradas y compararlo con los obtenidos anteriormente, para así, ver si cuánto hemos

mejorado con la paralelización.

Mejoras en el código paralelizado (P1.7) (10 h)

Tarea obsoleta, se hace junto a la tarea P1.6.

Una vez hemos paralelizado el código y visto los tiempos de ejecución, podemos tratar de

mejorarlo haciendo modificaciones al código, como por ejemplo, utilizar una distribución

distinta de los bloques y los threads por bloque de la que hemos hecho inicialmente. Por lo

tanto, la tarea (P1.6) debe haberse realizado para empezar con esta.

Luego, haríamos lo mismo, generaríamos los nuevos tiempos de ejecución de esta versión y

los analizaremos con los generados por la versión inicial, la optimizada y la versión anterior

paralelizada.

Programación multiGPU (20 h)

Nueva tarea, no se tuvo en cuenta.

Una vez tenemos nuestra versión de la máquina Enigma en cuda, paralelizaremos la

ejecución con las 2 GPUs que hay en el nodo 9 de boada. Por lo tanto, se necesita la tarea

P1.6 previamente realizada para empezar con esta.

6.5.2 Segunda parte del proyecto (P2)

Búsqueda de información de como crackearon los ingleses la máquina Enigma

101

(P2.1) (30 h)

Es muy importante saber el procedimiento que utilizaron para crackear la máquina, sobre

todo en que se basaron para ello. Esto servirá para luego plasmarlo en el código que

generamos que simulará lo mismo. Por lo tanto, la tarea (P1.1) debe haber sido realizada

para empezar con esta.

Se utilizará cualquier medio de información que pueda ser útil: Youtube, distintas páginas

webs, búsqueda de algún libro que trate de ello…

Generar código general del crackeo (P2.2) (50 h)

Finalmente se han tardado 70 horas.

Se implementará una primera versión del código para crackear la máquina Enigma. Esta

versión va a ser lo más fiel posible a la Bombe original. Por lo tanto, la tarea (P2.1) debe

haberse realizado para empezar con esta.

Una vez implementado, se verificará si la salida es la correcta, es decir, a través de una

entrada, en este caso un texto encriptado (salida del código inicial del proyecto), encontrará

una configuración inicial de la máquina. Si utilizamos nuestro código anterior de la máquina

con esta configuración inicial, y se desencripta correctamente, habremos logrado el

objetivo. Por lo tanto, la tarea 2 debe de haberse realizado para empezar con esta.

Tras verificar la salida y ver que es correcta, pasaremos a obtener el tiempo de ejecución.

Optimizar código general del crackeo (P2.3) (10 h)

Tarea obsoleta, no era necesaria.

Una vez verificamos que el código general del crackeo funciona, vamos a implementar

optimizaciones en el código para mejorar el tiempo de ejecución de este, ya que como

vimos, funciona por fuerza bruta. Por lo tanto, la tarea (P2.2) debe haberse realizado para

empezar con esta.

Como en este punto en el que estoy escribiendo la documentación, no se como funciona al

cien por cien el crackeo de la máquina porque aun no he buscado suficiente información, no

estoy seguro de que como mínimo, se pueda utilizar la técnica de memoization, por lo que

es muy posible de que el código no pueda ser optimizado.

102

Si hemos podido optimizar el código, pasamos a verificar si la salida que genera es la misma

que el código general del crackeo para la misma entrada.

Tras verificar la salida y ver que es correcta, pasaremos a obtener el tiempo de ejecución y a

compararlo con el que obtuvimos con el código general del crackeo.

Programar en cuda el código general del crackeo (P2.4) (40 h)

Una vez funciona nuestro código que simula el funcionamiento de la Bombe, pasamos a

paralelizarlo con cuda.

Tras la implementación, verificaremos que la salida que nos genera es la misma que el

código general del crackeo, y si vemos que es correcto, sacaremos los tiempos de ejecución

de nuestra versión paralelizada y los compararemos con los tiempos sacados de la versión

general y de la optimizada.

Programación multiGPU (P2.5) (20 h)

Una vez hemos verificado que nuestra versión paralelizada con tarjeta gráfica es la mejor y

más rápida, probaremos a generar un código para realizar el mismo cálculo pero con más de

una tarjeta gráfica. Por lo tanto, la tarea (P2.4) debe haberse realizado previamente para

empezar esta.

Tras esto, verificaremos si la salida sigue siendo la correcta, sacaremos el tiempo de

ejecución para distintos números de tarjetas gráficas y los compararemos con las versiones

anteriores.

Programación con streams (P2.6) (20 h)

Tarea obsoleta, no era necesaria.

Una posible mejora a la ejecución de un código ejecutado por varias tarjetas gráficas es

mejorarlo con la ejecución por streams. Por lo tanto, implementaremos una versión con

streams de nuestro código multiGPU, por lo que la tarea (P2.5) debe haberse realizado para

empezar con esta.

Como siempre, tras verificar que la salida es correcta, generamos los tiempos de ejecución y

los compararemos con la versión multiGPU, para ver si la hemos podido mejorar.

Máquina check secuencial (50 h)

103

Nueva tarea, no se tuvo en cuenta por desconocimiento.

Una vez visto el resultado de la Bombe, seguramente este sea incompleto, por que

deberemos de crear otro programa que simule lo que hacían los ingleses para probar

configuraciones hasta que diesen con la correcta. Para que esta tarea pueda desarrollarse,

hace falta que la tarea (P2.2) se haya finalizado y funcione correctamente.

Máquina check con cuda (30 h)

Nueva tarea, no se tuvo en cuenta.

Una vez visto que llegamos a una configuración de la Enigma correcta, hemos de mejorar

nuestro código de la máquina check para que mediante programación en cuda, se ejecute

más rápido. Por lo tanto, necesitamos que la tarea anterior se haya realizado y funcione

correctamente.

Crackeo con fuerza bruta (10 h)

Nueva tarea, no se tuvo en cuenta.

Para mostrar lo importante que fue el método con el que crackearon la máquina Enigma,

evitando a toda costa la fuerza bruta, se hará un programa que probará todas las

configuraciones de Enigma posibles para el texto que queremos desencriptar. Para que esta

tarea pueda realizarse, debe de haberse terminado la tarea anterior.

6.5.3 Tercera parte del proyecto (P3)

Documentación (P3.1) (30 h)

Finalmente se han tardado 60 horas.

Tras haber ido apuntando y analizando todos los resultados obtenidos hasta llegar aquí,

tendremos que documentar todo el proceso del proyecto y sacar conclusiones de dichos

resultados. Finalmente se han anotado los resultados una vez estábamos ya

documentando, por lo que esta tarea ha sufrido un gran retraso frente a lo previsto.

La tarea (P2.6) debe haberse realizado para empezar con esta, ya que es la última del

proyecto.

104

6.5.4 Resumen de las tareas

Tabla obsoleta, el cómputo de horas totales es de 401, debido al aumento del tiempo
requerido para realizar algunas de las ya previstas y de la introducción de nuevas tareas
que no se habían tenido en cuenta por falta de información sobre el tema en cuestión.

Para la lectura de la Tabla X, vamos a utilizar sigla “PR” para hacer referencia al

programador, y “RB” para el responsable de boada.

Tabla 28. Resumen de las tareas

6.6 Estimaciones y Gantt

Diagrama de Gantt obsoleto, debido al número de horas totales.

Para basarme en el diagrama de Gantt de la Figura X, he supuesto que la jornada laboral

diaria es de 8 horas. Como es un trabajo académico, fines de semanas y festivos también son

laborales.

105

Figura 82. Diagrama de Gantt

6.7 Gestión del riesgo: planes alternativos y obstáculos

Tal y como hemos comentado anteriormente, pueden originarse a lo largo del proyecto una

serie de obstáculos que algunos de ellos tienen fácil solución (independientemente del

tiempo que se emplee en ella) y otros que no o es imposible.

Al ser un trabajo incremental (se quiere mejorar siempre lo que ya se tiene), si nos

estancamos en una parte de la implementación del código y no hay forma de proseguir, se

tratará de realizarlo de una forma más sencilla o, utilizar la que ya está implementada.

Siempre que se piense en una idea mejor de la que se ha implementado, se probará para ver

si realmente mejora lo ya realizado. Si es así, está será la versión con la que seguiremos

trabajando. Si por el contrario, no lo es, esta se descartará.

Si por alguna razón, no encontramos en internet la información necesaria para implementar

una tarea, se recurriría a buscar libros. Esto hay que tenerlo en cuenta, ya que se invertiría

tiempo de espera si se hace una compra online y un gasto que no se contempla desde un

principio.

Al estar trabajando con material informático, cualquier problema en estos dispositivos nos

penalizará. Si el problema está en el ordenador desde donde se trabaja, se utilizará otro

ordenador (situado en un ámbito de trabajo que no es el mio) y se pedirán las piezas que

haya que pedir para reparar el ordenador. Se optará por la misma solución si hay un

106

problema en la red eléctrica o en internet, ya que el ordenador desde el cual se trabaja, es

de sobremesa. Si por el contrario, el problema viene de boada, la única solución que existe

es comprar los componentes que se hayan estropeado e instalarlos.

Por último, si vemos que lo que se ha empezado de CUDA no cubre todo lo que la asignatura

de tarjetas gráficas abarca, no hay problema con ello, ya que no es el objetivo principal del

proyecto, si no una ampliación con la que el profesor Agustín Fernández se podría ver

beneficiado.

6.8 Gestión Económica

6.8.1 Costes de personal (CPA)

Para este proyecto, nos hacen falta dos perfiles de trabajador: el programador, y el

encargado de gestionar los nodos boada que están situados en la universidad.

He realizado una búsqueda sobre lo que cobra de media un programador en barcelona,

mediante la web glassdoor [26], y el resultado ha sido de 30 000€ al año. Suponiendo que

una jornada laboral son de 8 horas diarias, de lunes a viernes y un mes al año de vacaciones:

30 000€/año / 1.76horas/año = 17.04€/hora

Teniendo en cuenta el precio que hay que pagar para la seguridad social, el coste de la

empresa para este trabajador sería de:

30 000€/año x 1.3 = 39 000€/año, y por lo tanto:

39 000€/año / 1.76horas/año = 22.16€/hora

Por otra parte, lo que cobra el encargado de gestionar y mantener activos los nodos boada

es alrededor de 40 000€ al año, según el profesor Agustín Fernández, que trabaja en la

universidad. Suponiendo las mismas condiciones de trabajo:

40 000€/año / 1.76horas/año = 22.73€/hora

Teniendo en cuenta el precio que hay que pagar para la seguridad social, el coste de la

empresa total por este trabajador sería de:

40 000€/año x 1.3 = 52 000€/año, y por lo tanto:

52 000€/año / 1.76horas/año = 29.54€/hora

107

En la Tabla 1.1, se muestra una tabla resumen de los perfiles que van a ejecutar cada tarea,

el tiempo que lo van a estar haciendo y el coste para la empresa de cada una de ellas.

La siguiente tabla está obsoleta debido al número de horas totales necesarias para la

realización del proyecto. El número de horas trabajadas por parte del programador es de

401 horas, y el del responsable de los nodos boada es de 180 horas (se calculó mal en la

Tabla 1.1 las horas de este trabajador, ya que solo es necesario que realice su trabajo

cuando el programador necesita ejecutar en boada). Teniendo en cuenta los costes por

hora acabos de ver, tenemos que los costes directos por actividad son de:

- Programador: 8 886.16€
- Responsable boada: 5 317.2€
- Total: 14 203.36€

Tabla 29. Costes directos por actividad

6.8.2 Costes genéricos (CG)

6.8.2.1 Amortizaciones

Hardware

Para el programador, se va a necesitar un ordenador de sobremesa con el que trabajar.

Actualmente, se dispone de uno valorado en 900€ y una pantalla de 150€. Si suponemos,

que el tiempo medio de su vida útil es de unos 4 años (72 meses), que el proyecto va a durar

296 horas, que al año hay 220 días laborables y que estos días tienen 8 horas de trabajo:

108

La siguiente amortización está obsoleta, el número de horas totales es de 401, por lo que

la amortización del ordenador será de 59.81€.

(900€ + 150€) x 296h/4años x 1año/220dias x 1dia/8horas = 44€

Por la parte de boada, tenemos un intel Xeon E5-26020v2 que cuesta alrededor de 450 euros

[27]. Además, disponemos de 4 tarjetas gráficas TESLA k40c de NVIDIA, que cuestan

alrededor de 800 euros cada una [28]. Por lo tanto, si seguimos suponiendo la misma vida

útil, la amortización será de:

La siguiente amortización está obsoleta, se ha acabado trabajando en un nodo de boada

que solo tiene 2 gráficas en lugar de 4 y las horas totales del nodo activo no han sido las

planificadas, sino 180, por lo que el coste de la amortización será de 44.74€.

(450€ + 4 x 800€) x 296h/4años x 1año/220dias x 1dia/8horas = 153,46€

Software

Todo el software que se va a utilizar es una distribución de linux, por lo tanto, un sistema

operativo gratuito.

La siguiente amortización total está obsoleta: 104.55€.

En total, las amortizaciones son de: 44€ + 153.46€ = 197.46€

6.8.2.2 Consumo eléctrico

Para el ordenador de sobremesa que hemos comentado anteriormente, observamos que el

TDP de su procesador (i5-9600k)) es de 95W [29], y el de su tarjeta gráfica (rtx 2060) es de

160W [30]. Sin embargo, este ordenador no tendrá una carga de trabajo para nada alta, por

lo que el consumo será mucho menor. Además, tiene un monitor cuyo TDP es de 45W [31].

Por lo tanto, teniendo en cuenta que va a estar trabajando las 296 horas del proyecto:

El siguiente consumo está obsoleto debido al número de horas totales: 50 125 = 50.12
kWh.

(~50W + ~30W + ~45W) x 296h = 37 000Wh = 37kWh

A partir de aquí, a fecha de consulta 10 de marzo de 2022, el precio del kWh es de

109

0.505998€ [32], podemos saber que el coste eléctrico de dicho ordenador va a ser de:

El siguiente coste está obsoleto debido a consumo eléctrico: 25.36€/proyecto.

0.505998€/kWh x 37kWh = 18.72€/proyecto

Por otra parte, los núcleos boada vienen instalados con un Intel Xeon E5-26020v2, cuyo TDP

es de 80W [2] (se consumirá menos). Además, dispone de 4 tarjetas gráficas TESLA K40c, con

un TDP de 245W [11]. Teniendo en cuenta, que el consumo en las tarjetas gráficas, será solo

alto cuando mandemos el código a ejecutar, vamos a suponer que de las 200 horas que

boada tiene que estar activo, va a estar trabajando al 100% media hora:

El siguiente consumo está obsoleto debido al número de horas totales, número de horas
donde boada trabaja al 100% (50%, debido a que mucha parte del proceso de
documentación necesita de resultados de tiempos de ejecución) y al número de tarjetas
gráficas del nodo boada: 11.91 kWh 50% de carga y 51.3 kWh al 100%. Por lo que 63.21
kWh totales.

(~65W + 30Wx4gpus) x 199.5h = 36 907.5Wh = 36.91kWh

(80W + 245Wx4gpus) x 0.5h = 530Wh = 0.53kWh

Por lo tanto, el coste eléctrico de los nodos boada va a ser de:

El siguiente coste está obsoleto debido a consumo eléctrico: 31.98€/proyecto.

0.505998€/kWh x (36.91kWh + 0.53kWh) = 18.94€/proyecto

El siguiente coste está obsoleto: 25.36€/proyecto + 31.98€/proyecto = 57.43€/proyecto.

En total, el coste eléctrico del proyecto va a ser de: 18.72€ + 18.94€ = 37.66€

6.8.2.3 Factura de internet

El coste mensual de la tarifa de internet contratada con el ordenador de sobremesa es de

23.66€. Suponiendo que el nodo de boada va funcionar con la misma compañía, el coste de

internet en lo que dura el proyecto es de:

3meses x 2tarifas x 23.66€/mes = 142 euros/proyecto

110

6.8.2.4 Total costes genéricos

En la Tabla 1.2, se muestra un coste total de todos los costes genéricos que hemos
comentado a lo largo del documento hasta ahora.

La siguiente tabla está obsoleta, debido a todos los cambios que hemos visto a lo largo del
apartado “8.2 Costes genéricos (CG)”. El total es de 104.55€ + 57.43€ + 142€ = 303.98€.

Tabla 30. Costes genéricos

6.8.3 Contingencias

Ya que siempre es importante contemplar la posibilidad de que hayan complicaciones y/o

contratiempos durante la realización del proyecto, estos, pueden hacer que el coste final sea

mayor. Por lo tanto, podemos dar un margen del 15% del precio:

Las siguientes contingencias están obsoletas, debido a los cambios vistos anteriormente:

(14 203.36€ + 303.98€) x 0.12 = 1 740.88€.

(12 519.80€ + 377.12€) x 0.12 = 1 547.63€

6.8.4 Imprevistos

Por último, hace falta valorar cualquier tipo de imprevisto que pueda suceder a lo largo del

trabajo. En el caso de este proyecto, cualquier reemplazo de hardware tiene que tenerse en

cuenta, ya que será un extra al coste total del proyecto. También, y algo muy probable, es

que el tiempo de implementación de algunas tareas se alargue, ya que puede que muchas

funcionalidades cuesten más de lo que se cree en ser ideadas. La Tabla 1.3 muestra un

resumen de los imprevistos que pueden darse y de su coste, así como la probabilidad de que

estos ocurran.

111

Tabla 31. Costes de imprevistos

Tal y como se puede observar, la probabilidad de reemplazo de hardware es la suma de

probabilidades de reemplazo de componente del PC de sobremesa, de la CPU y/o GPU del

nodo boada (5% + 5% + 20%).

6.8.5 Coste total del proyecto

En la Tabla 1.4, se muestra el coste total del proyecto, teniendo en cuenta los apartados

anteriores.

La siguiente tabla está obsoleta debido a todos los cambios que hemos ido viendo: (14

203.36€ + 303.98€ + 1 740.88€ + 380.7€ = 16 628.92€.

Tabla 32. Coste total del proyecto

6.8.6 Control de gestión

Debido a los problemas externos a este proyecto, que están afectando a la subida de precios
de muchos productos, y en el que en este caso nos concierne, la luz, se hará a la semana un
cálculo de lo que se haya gastado de electricidad y se pagará la diferencia con parte del coste
de contingencias que habíamos calculado.

Por ahora, sabemos que el ordenador va a tener un coste de luz de 18.72€ en todo el

proyecto. Si va a estar trabajando 296 horas en total, y cada semana tiene 40 horas

112

laborables. Obsoleto, sabemos que el ordenador va a tener un coste de luz de 25.36€, y

que va a estar trabajando 401 horas. El siguiente coste por semana es correcto pero

porque coincide el resultado con los nuevos datos.

296horas x 1semana/40horas = 7.4 semanas, por lo que:

18.72€/7.4semanas = 2.53€/semana

Por otro lado, sabemos que el nodo boada va a tener un coste de luz de 18,94€ en todo el
proyecto. Si va a estar trabajando 200 horas en total. Obsoleto, sabemos que el coste de luz
del nodo boada va a ser de 31.98€ que el total de horas van a ser de 180, por lo que el
coste por semana es de: 7.11€.

200horas x 1semana/40horas = 5 semanas, por lo que:

18.94€/5semanas = 3.79€/semana

6.9 Informe de Sostenibilidad

6.9.1 Fita inicial

6.9.1.1 Autoevaluación

Siempre he sido partidario de reutilizar lo máximo posible los recursos. En mi caso, todo el

hardware de los ordenadores viejos siempre he aprovechado al máximo posible todo lo que

funcionaba para comprar los mínimos componentes posibles para así, darle un ordenador en

condiciones a un familiar o a amigos/conocidos. Todo esto es debido, a que en varias

ocasiones he visto documentales sobre el tema de verter componentes, y tengo muy

integrado las consecuencias que esto conlleva (tanto ambientales como sociales).

Sin embargo, la encuesta me ha dado a conocer muchos otros aspectos que desconocía y

que por ende, nunca los tenía en cuenta, como por ejemplo todo lo relacionado con el

código deontológico, consecuencias en la justicia social, … Es decir, los aspectos generales si

los tenía presente, pero cuando vas a detalles más específicos de dimensión social, nunca

me han hablado de ellos.

6.9.1.2 Dimensión Económica

Tal y como comentamos en el apartado de “Dimensión Ambiental”, el hardware utilizado en

el nodo boada tiene un precio que siempre va a ir al alza, ya que cuanto más potente sea

más nos beneficia, y por ende, más caro. Sin embargo, el ordenador de sobremesa que sirve

113

para programar, sí que puede ser uno de menos sofisticado, y por ende, más barato.

Es decir, si comparamos los costes de este proyecto con similares, una parte del proyecto sí

que podría estar reducido, es decir, el coste del ordenador de sobremesa, ya que no se

necesita de mucha potencia para la realización de este. Sin embargo, la parte de boada,

aumentaría cada vez que se quiere revisar este proyecto o mejorarlo, ya que las tarjetas

gráficas cada vez són más sofisticadas y por lo tanto, más caras.

Una vez comentado esto, y viendo los costes que hemos ido anotando a lo largo de este

documento, visto que no hay necesidad del proyecto (apartado “Dimensión Social”), no es

rentable hacer el proyecto, por su elevado coste.

6.9.1.3 Dimensión Ambiental

Por parte del nodo de boada, se necesita de un hardware potente, ya que cuanto más lo sea,

más potencia de cálculo nos va a ofrecer, y eso es precisamente lo que necesitamos. Por lo

tanto, no podemos reutilizar cualquier tarjeta gráfica e instalarla en el nodo, sinó que

tenemos que buscar un conjunto de 4, cuanto más potentes mejor.

Sin embargo, por parte del ordenador de sobremesa que va a ser utilizado para programar, sí

que podemos buscar uno que sea mucho menos sofisticado que el que se ha propuesto en el

proyecto (ya que me he basado en que es el que dispongo actualmente). Con esto, lo que

haremos será disminuir, obviamente, el stock de esta gama de ordenadores y mandarán a

fabricar otros de la misma gama, haciendo que estas fábricas gasten menos recursos de que

si hubieran mandado a fabricar ordenadores más potentes.

6.9.1.4 Dimensión Social

A nivel personal, este proyecto me va a aportar mucho, ya que primero de todo, me adentro

en el mundo de la gestión de un proyecto, cosa que en un futuro es muy posible que esté

involucrado en uno, tanto como el que lo gestiona, como un trabajador. Además, voy a

trabajar un ámbito de la informática (hardware) que es a la que quiero dedicarme, por eso

he elegido la especialización de “Ingeniería de computadores” y más específico, en el

apartado de investigación, ya que el proyecto va de eso.

Como dijimos al principio del primer documento de GEP, el trabajo no pretende ayudar

socialmente con su resultado, ya que es un trabajo de investigación basado en un momento

concreto de la historia. Lo que se quiere dar, es una idea de la evolución que ha tenido el

hardware hasta ahora, comparando la máquina Bombe, con la que crackearon la

codificación de la máquina Enigma, con las tarjetas gráficas actuales. Por lo tanto, no existe

114

una necesidad del proyecto.

6.9.2 Fita final

6.9.2.1 Desarrollo del proyecto

6.9.2.1.1 Impacto Económico

Si se comparan los costes que hubo inicialmente con los finales se observan desviaciones por

dos motivos:

- El proyecto ha tardado más en realizarse (132 horas adicionales).

- Se ha reducido las horas de trabajo del nodo de boada respecto a las propuestas

inicialmente, debido a que todo código secuencial puede trabajarse en local y solo

mandarlo a boada cuando necesitemos trabajar en cuda.

Para el coste del personal, se ha pasado de tener un coste de 12 519.89€ a un coste de 14

203.36€.

Para los costes genéricos:

- Las amortizaciones han pasado de tener un coste de 197.46€ a un coste de 104.55€
debido a que no se ha utilizado tanto hardware como el que se creyó necesario.

- El consumo eléctrico ha pasado de tener un coste de 37.66€ a un coste de 57.45€.

- La factura eléctrica ha quedado igual.

- El total de costes genéricos ha pasado de 377.12€ a 303.98€.

Las contingencias han pasado de tener un coste de 1 547.63€ a un coste de 1 740.88€.

Por lo tanto, el coste total del proyecto ha pasado de ser 14 825.25€ a un coste de 16

628.92€, todo y habiendo reducido en gran parte las horas activas del nodo boada. Sin

embargo, las horas totales del proyecto se han elevado bastante.

6.9.2.1.2 Impacto ambiental

Partiendo de los dos puntos vistos en el apartado anterior, que diferencian las predicciones

del documento inicial con lo necesito para el l final, tenemos que:

115

- Para el documento inicial, un consumo eléctrico del hardware de 74.44 kWh.

Además, partiendo de que un trabajador consume 0.1 kWh en su rutina habitual,

tenemos que el programador consume 29.6 kWh y que el encargado de boada

consume 20 kWh, por lo que un total de 124.04 kWh.

- Para los resultados finales, tenemos un total de 113.33 kWh para el consumo

eléctrico del hardware, un consumo de 40 kWh por el programador y uno de 18 kWh

para el encargado del nodo de boada, por lo que un total de 171.33 kWh.

Al igual que en el apartado anterior, la idea es solo estar conectado a boada cuando sea

necesario, es decir, cuando tenemos que tomar tiempos o programar en paralelo. Para

probar ejecuciones secuenciales, las podemos realizar desde casa, ya que el hardware es

menos potente y por lo tanto, consumiremos menos.

6.9.2.1.3 Impacto social

La realización de este proyecto nos ha hecho pensar mucho tanto a mi director de proyecto

como a mi sobre los resultados que se pueden obtener mediante el ingenio humano en

contra de puros algoritmos de fuerza bruta. Por lo tanto, ser conscientes de estas ideas para

luego ponerlas en práctica en nuestro ámbito de trabajo tan pronto como sea posible.

6.9.2.2 Vida útil

6.9.2.2.1 Impacto social

Todo aquél que quiera aprender o leer sobre ejecuciones y decisiones tomadas sobre

programas paralelizados en cuda se va a ver beneficiado de este proyecto, ya que en este, no

solo se muestran ideas de cómo ejecutar algoritmos, sino de análisis de por qué una

ejecución es buena, por que no lo es, como se podría mejorar…

Además, existe la posibilidad de que el profesor Agustín Fernández, utilice algún código de

este proyecto para llevarlo al campo de la asignatura que ejerce, Targetas Gráficas y

Aceleradores, para así, organizar las clases de laboratorio de una forma progresiva,

trabajando con el código de la Enigma.

7. Conclusiones y líneas abiertas

A lo largo del proyecto, nos hemos ido dando cuenta de un problema que ha pasado desde

siempre en el ámbito de la criptografía, que sigue ocurriendo y que lo seguirá haciendo, es el

116

tema del fallo humano. Una brecha de seguridad que si otro individuo la detecta, la va a

explotar y podrá realizar un ataque. En el caso de la Enigma, dos fallos humanos que fueron

los causantes de que se pudiera crackear: el primero, que una letra que se introducía en la

Enigma no podía generar la misma, y la segunda, que la milicia nazi empezaban los mensajes

siempre con el mismo patrón (el parte meteorlógico).

Nos hemos dado cuenta también de que cuando existen alternativas a la fuerza bruta hay

que aplicarlas inmediatamente, ya que la reducción en el tiempo de cómputo se ve

favorecida enormemente. Habrá veces que para llegar a tal reducción como se llegó con la

Bombe, se requiera de mucho ingenio como el de Alan Turing, pero vale la pena pensar estas

alternativas a la fuerza bruta.

En cuanto al ámbito de cuda, hemos visto que no todos los programas están pensados para

que tengan un buen rendimiento en cuda; a unos se les podrá hacer cambios menores

(como es el caso de la Bombe, ya que se quería llegar a una ejecución que simulase lo más

fielmente a lo que se realizó), a otros, habrá que pensar soluciones alternativas para

acomodarlos mejor a una ejecución en cuda. Como hemos visto y comentado, este

acomodamiento se basa, principalmente en 3 factores: que no haya divergencia en el

camino de ejecución de los threads, que se hagan accesos a memoria contiguos y alineados

y que se oculte la latencia de memoria, explotando los accesos a esta.

Una vez finalizado el proyecto, toda la idea que hay detrás de este y los códigos pueden ser

empleados y expandidos de muchas formas:

- Se comentó con el profesor Agustín Fernández de utilizar algún código en los

laboratorios de la asignatura de TGA para ver qué mejoras recibe un código al ser

paralelizado. También pueden llegar a ser útiles para entender y analizar conceptos

de cuda, sobre todo conceptos como los accesos a memoria (analizarlos con el

profiler de nvidia, por ejemplo), tal y como se ha hecho en varios apartados.

- Pueden expandirse los códigos para que hagan uso de lo que llamaron “ring

settings”, el cual, permite seleccionar los primeros contactos entre dos rotores, por lo

que se elevaría cada posible posición de un rotor de 26 posibles posiciones iniciales a

26x26.

- Pueden expandirse los códigos para que hagan uso de más parejas del plugboard,

hasta un máximo de 13. Esto aumentaría la complejidad de la Enigma enormemente,

y por lo tanto, de los cálculos.

- Puede expandirse los códigos para que ejecuten una máquina Enigma con 5 rotores,

y dos de ellos con 2 muescas, tal y como hicieron la milicia nazi más tarde con las

comunicación del ejército naval. Por lo tanto, la máquina Bombe debería ser

trabajada de nuevo.

117

- Puede estudiarse la mejora del código de fuerza bruta, aunque esté incompleto. La

mejora sustancial se vería afectada por una generación de las combinaciones más

óptima de la que he realizado, ya que esta, se basa en acceder a matrices cada vez

más grandes.

8. Referencias

[1] Jesús Velasco, J. Breve historia de la criptografía. El Diario [en línea]. 20 Mayo 2014.

Disponible en:

<https://www.eldiario.es/turing/criptografia/breve-historia-criptografia_1_4878763.html>

[2] Atbash. En: Wikipedia [en línea]. [Consulta: 20 Mayo 2022]. Disponible en:

<https://es.wikipedia.org/wiki/Atbash>

[3] Cifrado por sustitución. En: Wikipedia [en línea]. [Consulta: 20 Mayo 2022]. Disponible

en: <https://es.wikipedia.org/wiki/Cifrado_por_sustituci%C3%B3n>

[4] Cifrado por transposición. En: Wikipedia [en línea]. [Consulta: 20 Mayo 2022]. Disponible

en: <https://es.wikipedia.org/wiki/Cifrado_por_transposici%C3%B3n>

[5] Escítala. En: Wikipedia [en línea]. [Consulta: 20 Mayo 2022]. Disponible en:

<https://es.wikipedia.org/wiki/Esc%C3%ADtala>

[6] Cifrado César. En: Wikipedia [en línea]. [Consulta: 20 Mayo 2022]. Disponible en:

<https://es.wikipedia.org/wiki/Cifrado_C%C3%A9sar>

[7] Al-Kindi. En: Wikipedia [en línea]. [Consulta: 20 Mayo 2022]. Disponible en:

<https://es.wikipedia.org/wiki/Al-Kindi>

[8] Tabara Carbajo, JL. Criptografía clásica [en línea]. [Consulta: 20 Mayo 2022]. Disponible

en: <https://joseluistabaracarbajo.gitbooks.io/criptografia-clasica/content/Cripto11.html>

[9] Cifrado de Alberti. En: Wikipedia [en línea]. [Consulta: 20 Mayo 2022]. Disponible en:

<https://es.wikipedia.org/wiki/Cifrado_de_Alberti>

[10] Alberti cipher. En: Wikipedia [en línea]. [Consulta: 20 Mayo 2022]. Disponible en:

<https://en.wikipedia.org/wiki/Alberti_cipher>

[11] Cifrado de Trithemius. En: Wikipedia [en línea]. [Consulta: 20 Mayo 2022]. Disponible

en: <https://es.wikipedia.org/wiki/Cifrado_de_Trithemius>

118

https://www.eldiario.es/turing/criptografia/breve-historia-criptografia_1_4878763.html
https://es.wikipedia.org/wiki/Atbash
https://es.wikipedia.org/wiki/Cifrado_por_sustituci%C3%B3n
https://es.wikipedia.org/wiki/Cifrado_por_transposici%C3%B3n
https://es.wikipedia.org/wiki/Esc%C3%ADtala
https://es.wikipedia.org/wiki/Cifrado_C%C3%A9sar
https://es.wikipedia.org/wiki/Al-Kindi
https://joseluistabaracarbajo.gitbooks.io/criptografia-clasica/content/Cripto11.html
https://es.wikipedia.org/wiki/Cifrado_de_Alberti
https://en.wikipedia.org/wiki/Alberti_cipher
https://es.wikipedia.org/wiki/Cifrado_de_Trithemius

[12] Enigma machine. En: Wikipedia [en línea]. [Consulta: 20 Mayo 2022]. Disponible en:

<https://en.wikipedia.org/wiki/Enigma_machine>

[13] Enigma Simulator (2016). Piotte13 github [simulador web]. [Consulta: 11 Marzo 2022].

DIsponible en: <https://piotte13.github.io/enigma-cipher/>

[14] Enigma rotor details. En: Wikipedia [en línea]. [Consulta: 2 Junio 2022]. Disponible en:

<https://en.wikipedia.org/wiki/Enigma_rotor_details>

[15] Enigma wiring. En: Cryptomuseum [en línea]. [Consulta: 2 Junio 2022]. Disponible en:

<https://www.cryptomuseum.com/crypto/enigma/wiring.htm>

[16] Owen, J. How did the Enigma machine work? [YouTube]. [Consulta: 2 Junio 2022].

Disponible en:

<https://www.youtube.com/watch?v=ybkkiGtJmkM&ab_channel=JaredOwen>

[17] Technical Specification of the Enigma. En: codesandciphers [en línea]. [Consulta: 2 Junio

2022]. Disponible en: <https://www.codesandciphers.org.uk/enigma/rotorspec.htm>

[18] https://qph.cf2.quoracdn.net/main-qimg-1fba8c31b98673a2c02ac8f9ca50c79e-pjlq

[19] Iedermueller. Enigma Machine Mechanism (feat. a ‘Double Step’) [YoutTube]. [Consulta:

11 Junio 2022]. Disponible en:

<https://www.youtube.com/watch?v=hcVhQeZ5gI4&ab_channel=ledermueller>

[20] Ellsbury, G. The Turing Bombe: Cribs and Menus [en línea]. [Consulta: 26 Marzo 2022].

Disponible en: <http://www.ellsbury.com/bombe1.htm>

[21] Numberphile. Flaw in the Enigma Code [YoutTube]. [Consulta: 3 Febrero 2022].

Disponible en

<https://www.youtube.com/watch?v=V4V2bpZlqx8&ab_channel=Numberphile>

[22] Ellsbury, G. The Turing Bombe: Description of the Bombe [en línea]. [Consulta: 26 Marzo

2022]. Disponible en: <http://www.ellsbury.com/bombe2.htm>

[23] Ellsbury, G. The Turing Bombe: How the Bombe was Plugged-Up [en línea]. [Consulta:

26 Marzo 2022]. Disponible en: <http://www.ellsbury.com/bombe3.htm>

[24] Ellsbury, G. The Turing Bombe: How the Bombe Worked [en línea]. [Consulta: 26 Marzo

2022]. Disponible en: <http://www.ellsbury.com/bombe4.htm>

119

https://en.wikipedia.org/wiki/Enigma_machine
https://piotte13.github.io/enigma-cipher/
https://en.wikipedia.org/wiki/Enigma_rotor_details
https://www.cryptomuseum.com/crypto/enigma/wiring.htm
https://www.youtube.com/watch?v=ybkkiGtJmkM&ab_channel=JaredOwen
https://www.codesandciphers.org.uk/enigma/rotorspec.htm
https://qph.cf2.quoracdn.net/main-qimg-1fba8c31b98673a2c02ac8f9ca50c79e-pjlq
https://www.youtube.com/watch?v=hcVhQeZ5gI4&ab_channel=ledermueller
http://www.ellsbury.com/bombe1.htm
https://www.youtube.com/watch?v=V4V2bpZlqx8&ab_channel=Numberphile
http://www.ellsbury.com/bombe2.htm
http://www.ellsbury.com/bombe3.htm
http://www.ellsbury.com/bombe4.htm

[25] Paño Badía, S. El uso de permutaciones para encontrar el cableado de la máquina

Enigma [en línea]. Trabajo final de grado, Universidad de Zaragoza. Departamento de

Matemáticas, 2017 [Consulta: 18 marzo 2022]. Disponible en:

<https://zaguan.unizar.es/record/64250/files/TAZ-TFG-2017-2158.pdf>

[26] Sueldos para Programador. En: glassdoor [en línea]. [Consulta: 9 marzo 2022].

Disponible en:

<https://www.glassdoor.es/Sueldos/barcelona-programador-sueldo-SRCH_IL.0,9_IC254719

4 _KO10,21.htm>

[27] Procesador Intel Xeon E5-2620 v2. En: Intel [en línea]. [Consulta: 9 marzo 2022].

Disponible en

<https://ark.intel.com/content/www/es/es/ark/products/75789/intel-xeon-processor-e526

2 0-v2-15m-cache-2-10-ghz.html>

[28] NVIDIA Tesla K40c: especificaciones técnicas y pruebas. En: technical city [en línea].

[Consulta: 9 marzo 2022]. Disponible en: <https://technical.city/es/video/Tesla-K40c>

[29] Procesador Intel Core i5-9600k. En: Intel [en línea]. [Consulta: 99 marzo 2022].

Disponible en:

<https://ark.intel.com/content/www/es/es/ark/products/134896/intel-core-i59600k-proces

sor-9m-cache-up-to-4-60-ghz.html>

[30] GeForce RTX 2060 Ventus 6G OC. En: MSI [en línea]. [Consulta: 9 marzo 2022].

Disponible en:

<https://es.msi.com/Graphics-Card/GeForce-RTX-2060-VENTUS-6G-OC/Specification>

[31] BenQ ZOWIE XL2411P 24" LED 144Hz e-Sports. En: PCComponentes [en línea].

[Consulta: 9 marzo 2022]. Disponible en:

<https://www.pccomponentes.com/benq-zowie-xl2411p-24-led-144hz-e-sports>

[32] Precio de la luz por horas. En: Tarifaluzhora [en línea]. [Consulta: 10 marzo 2022].

Disponible en: <https://tarifaluzhora.es/>

120

